The Equivariant *K*-localization of the *G*-Sphere Spectrum

Kenneth Hansen

This is part 3 of my Ph.D. thesis, which I wrote at Aarhus University, Matematisk Institut, in 1991. It has appeared in Matematisk Instituts Preprint Series, no. 37, 1991.

The two other parts are Oriented, Equivariant *K*-theory and the Sullivan Splitting The *K*-localizations of Some Classifying Spaces The purpose of this paper is to generalize Bousfield's calculation in [B79b], (4.3) of the *K*-localization of the sphere spectrum to the equivariant case.

This is done as follows: We select an odd prime p, and then consider two different cases:

I: *G* is a *p*-group, and

II: *G* is a finite group with order prime to *p*.

In both cases we work *p*-locally.

In section I we describe the *G* Spaces $Q_G S^0$ and $K(\mathbb{F}_q, G)$. In section 2 we consider the two different cases above and define the relevant infinite *G*-loop space, J(G, p), which is to give the K_G -localization of the *G*-sphere spectrum S_G . We also define the infinite *G*-loop map $e(G, p) : Q_G S^0 \to J(G, p)$, and the *G*-space Cok J(G, p) as the homotopy fibre of e(G, p).

In section 3 we show that in case II we have a splitting

 $SF_G \simeq J(G, p)_0 \times \operatorname{Cok} J(G, p)_0,$

where SF_G , $J(G, p)_0$ and $\operatorname{Cok} J(G, p)_0$ denote the *G*-connected covers of $Q_G S^0$, J(G, p) and $\operatorname{Cok} J(G, p)$, respectively. At the moment it doesn't seem to be possible to prove an analogous statement in case I.

In section 4 we study the K_G -theory of S_G and of J(G, p).

In section 5 we briefly describe the properties of equivariant Bousfieldlocalization with respect to a *G*-spectrum, and we define the \mathcal{K}_G -localization, which in a certain sense is the correct localization to use. A *G*-spectrum *X* is \mathcal{K}_G -local, if and only if for every subgroup *H* of *G* the fixed point spectrum X^H is *K*-local.

Finally, in section 6 we calculate the \mathcal{K}_{G} -localization of S_{G} .

I would like to thank my Ph.D. advisors Ib Madsen and Jørgen Tornehave, and also Marcel Bökstedt for invaluable help. Especially, the idea to the definition (2.1) came from Ib Madsen.

1. Preparations

In this section we collect results to be used in the following. We start by defining the spaces $Q_G S^0$, SF_G and $K(\mathbb{F}_q, G)$:

Definition 1.1

Let $Q_G S^0$ be the G-loop-space $\underline{\lim} \Omega^V S^V$, where the limit is over all *G*-modules in a fixed *G*-universe \mathcal{U} , cf. [LMS], p.l l ff. we demand that \mathcal{U} is a complete *G*universe, i.e. that \mathcal{U} contains countably many copies of the regular representation $\mathbb{R}[G]$.

Let SF_G be the *G*-connected cover of Q_GS^0 , cf [E1], p.277. We here let the basepoint of Q_GS^0 be the identity map between *G*-spheres.

<u>Proposition 1.2</u> ([S70], p.62) $(Q_G S^0)^G \simeq \prod_{(H)} Q(BW_G H_+)$ and $(SF_G)^G \simeq \prod_{(H)} Q_0(BW_G H_+)$, where the product is

over all conjugacy classes (*H*) of subgroups of *G*, and $W_G H$ is the Weyl-group $N_G(H)/H \cdot Q_0(BW_G H_+)$ is the basepoint component of $Q(BW_G H_+)$.

Remark 1.3

It is well known, [Sh], p.242, that the infinite *G*-loop-space $Q_G S^0$ can alternatively be obtained as follows:

Let \mathcal{E}_G be the category, whose objects are pairs (n,ρ) , where *n* is a non-negative integer, and $\rho: G \to \Sigma_n$ is a homomorphism. The set of morphisms $(m,\rho) \to (n,\tau)$ is empty if $m \neq n$, and the set of all bijections $\{1,...,m\} \to \{1,...,n\}$ if m = n.

G acts on \mathcal{E}_G as follows: *G* acts trivially on objects, and if $f:(m,\rho) \to (n,\tau)$ is a morphism, and $g \in G$, then gf is the morphism sending $i \in \{1,...,m\}$ to $\tau(g)(f((\rho^{-1}(g)(i))))$.

 \mathcal{E}_{G} has a composition given by the disjoint union \coprod , $(m,\rho)\coprod(n,\tau) = (m+n,\rho\coprod\tau)$, where $\rho\coprod\tau: G \to \Sigma_{m+n}$ is the composite $G \xrightarrow{\rho \times \tau} \Sigma_m \times \Sigma_n \longrightarrow \Sigma_{m+n}$.

This makes \mathcal{E}_G into a permutative *G*-category, and according to [Sh], thm. A', p. 255, the group completion $\Omega B(B\mathcal{E}_G)$ of \mathcal{E}_G is an infinite *G*-loop-space. It follows from [Sh], p.242, that $\Omega B(B\mathcal{E}_G)$ is *G*-homotopy equivalent to $Q_G S^0$ as an infinite *G*-loop-space.

Definition 1.4 ([FHM], (2.1))

Let *q* be a prime power. Let $\mathcal{GL}_G(\mathbb{F}_q)$ be the category, whose objects are pairs (n,ρ) , where *n* is a non negative integer, and $\rho: G \to Gl_n(\mathbb{F}_q)$ is a homomorphism. The set of morphisms $(m,\rho) \to (n,\tau)$ is empty if $m \neq n$, and is the set of all \mathbb{F}_q -isomorphisms $\mathbb{F}_q^m \to \mathbb{F}_q^n$ when m = n.

G acts on $\mathcal{GL}_G(\mathbb{F}_q)$ like the *G*-action on \mathcal{E}_G , and direct sum of \mathbb{F}_q -modules makes $\mathcal{GL}_G(\mathbb{F}_q)$ into a permutative *G*-category.

The corresponding infinite *G*-loop-space $\Omega B(BGL_G(\mathbb{F}_q))$ is denoted $K(\mathbb{F}_q, G)$ – see e.g. [Sh], p.242, or [FHM], (0.2).

Proposition 1.5 ([FHM], (3.1))

Assume (q, |G|) = 1. Let $V_1, V_2, ..., V_n$ be the irreducible $\mathbb{F}_q G$ -modules, and let $D_i = \text{Hom}_{\mathbb{F}_q G}(V_i, V_i)$ be the corresponding finite field. Then

$$(K(\mathbb{F}_q,G))^G \simeq \prod_{i=1}^n K(D_i) \simeq \prod_{i=1}^n K(\mathbb{F}_q[G])$$

Definition 1.6

The functor $P: \mathcal{E}_G \to \mathcal{GL}_G(\mathbb{F}_q)$ is defined as follows. *P* maps rhe object $(n, \rho: G \to \Sigma_n)$ of \mathcal{E}_G to $(n, \rho: G \to Gl_n(\mathbb{F}_q))$, where Σ_n is embedded in $Gl_n(\mathbb{F}_q)$ as the subgroup permitting the standard basis. On morphisms we let $P(f:(m,\rho) \to (n,\tau))$ the map $P(f): \mathbb{F}_q^m \to \mathbb{F}_q^n$ mapping the *i*'th standard basis vector e_i to $e_{f(i)}$.

P is seen to preserve the *G* action and the permutative structure.

Definition 1.7

The infinite *G*-loop-map $e_G : Q_G S^0 \to K(\mathbb{F}_q, G)$ is defined to be $e_G = \Omega B(B(P)) : Q_G S^0 = \Omega B(B\mathcal{E}_G) \to \Omega B(B\mathcal{GL}_n(\mathbb{F}_q)) = K(\mathbb{F}_q, G)$

We use the notation of [E1] and let \mathcal{O}_G denote the category of *G*-orbits, i.e. the objects of \mathcal{O}_G are the transitive *G*-sets G/H, where *H* ranges over all the subgroups of *G*. The morphisms are all *G*-maps.

For a *G*-space *X*, we let ΦX denote the functor $\mathcal{O}_G \rightarrow \{\text{pointed topological spaces}\}\$ given by

 $(\Phi X)(G/H) = X^H.$

(In general, a functor $\mathcal{O}_G \to \{\text{pointed topological spaces}\}\)$ is denoted an \mathcal{O}_G -space). Φ is seen to be a functor from $\{G\text{-spaces}\}\)$ to $\{\mathcal{O}_G\text{-spaces}\}\)$.

We furthermore have the functor $C : \{\mathcal{O}_G \text{-spaces}\} \rightarrow \{G\text{-spaces}\}$, which is the right adjoint to Φ in the corresponding homotopy categories, i.e. we have the natural bijection

(1.8) $[X, CT]^G \cong [\Phi X, T]_{\mathcal{O}_C}$ [X,CTIG N (ØX,Tloc

of [E1], thm. 2, where X is a G-space and T an \mathcal{O}_{G} -space.

We describe in detail the \mathcal{O}_{G} -space $\Phi(Q_{G}S^{0})$:

By considering the category \mathcal{E}_G of (1.3), we see that $(\mathcal{E}_G)^H$ is equivalent to the category \mathcal{S}_H consisting of all finite *H*-sets and *H*-equivalences. \mathcal{S}_H splits as a category into factors $\mathcal{T}_{H/K}$, where H/K is the typical irreducible *H*-set, and where the product ranges over all the *H*-conjugacy classes $(K)_H$ of supgroups *K* of *H*. $\mathcal{T}_{H/K}$ is the full subcategory of \mathcal{S}_H consisting of the objects n(H/K), $n \ge 0$.

From (1.2) we have that

$$(Q_G S^0)^H \simeq (Q_H S^0)^H \simeq \prod_{(K)_H} Q(BW_H K_+)$$

where the product runs over all *H*-conjugacy classes of subgroups *K* of *H*. In view of the discussion above, we see that the factor $Q(BW_HK_+)$ originates as

 $Q(BAut_H(H/K)_+)$ – recall that $Aut_H(H/K) = W_H K$.

Let $K \leq H \leq G$ be subgroups. The projection map $G/K \to G/H$, which is a morphism of \mathcal{O}_G , induces the inclusion $(Q_G S^0)^H \to (Q_G S^0)^K$. This map is described as follows:

Let $S_1 = H / A_1$, $S_2 = H / A_2$, ..., $S_n = H / A_n$, and $T_1 = K / B_1$, $T_2 = K / B_2$..., $T_m = K / B_m$ be a complete list of the inequivalent, irreducible *H*-sets and *K*sets, respectively. The integers a_{ij} , $1 \le i \le m$, $1 \le j \le n$, are defined by

$$Res_{K}^{H}(S_{j}) \cong \prod_{i=1}^{m} a_{ij}T_{i}$$

Furthermore, we have the group homomorphism

$$r_{ij} = W_H A_j = Aut_H(S_j) \rightarrow Aut_K(a_{ij}T_i) = \sum_{a_{ij}} \int W_K B_i$$

well defined up to inner automorphisms. r_{ij} gives a functor $\mathcal{T}_{H/A_j} \to \mathcal{T}_{K/B_i}$, and we obtain an infinite loop map $R_{ij}: Q(BW_HA_j) \to Q(BW_KB_i)$.

The map
$$S: (Q_G S^0)^H = \prod_{j=1}^m Q(BW_H A_j) \to \prod_{i=1}^n Q(BW_K B_i) = (Q_G S^0)^K$$
 is now given

by the $m \times n$ matrix:

(1.9)
$$A_{K}^{H} = \begin{pmatrix} a_{11}R_{11} & a_{12}R_{12} & \dots & a_{1n}R_{1n} \\ a_{21}R_{21} & a_{22}R_{22} & \dots & a_{2n}R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}R_{m1} & a_{m2}R_{m2} & \dots & a_{mn}R_{mn} \end{pmatrix}$$

This is seen as follows: As both *S* and A_K^H are infinite loop maps, they are determined up to homotopy by their restrictions to $\prod_{j=1}^m BW_H A_j$. These restrictions coincide, and we conclude that *S* and A_K^H are homotopic maps.

A general morphism $f: G/K \to G/H$ in \mathcal{O}_G is of the form f(gH) = gaK, where $a \in G$ is given by f(H) = aK. It is seen that $a^{-1}Ka \leq H$, and as there is a one to one correspondance between $a^{-1}Ka$ -sets and *K*-sets, the induced map $\Phi(Q_GS^0)(f)$ is given by $I^{a^{-1}Ka} \circ A^H_{a^{-1}Ka}$, where $I^{a^{-1}Ka}_K$ is the $m \times m$ -matrix given as follows: Let the irreducible *K* sets be $\{T_1, T_2, ..., T_m\}$, and let the irreducible $a^{-1}Ka$ -sets be $\{U_1, ..., U_m\}$. Then the (i, j) 'th entry of $I^{a^{-1}Ka}_K$ is 1 if T_i corresponds to U_j under the 1-1 correspondance above, and is zero otherwise.

2. Equivariant *J*-theory

In this section we define equivariant *J*-theory. We fix an odd prime p, and we define the p-local, equivariant space J(G, p) in two cases:

- I: when G is a p-group, and
- II: when G is a finite group with order |G| relatively prime to p.

In both cases we select a prime q, such that $q + p^2 \mathbb{Z}$ generates the unit group $(\mathbb{Z}/p^2)^{\times}$, and such that (q, ||G||) = 1. Such an integer q exists according to Dirichlet's theorem, cf. [Ap], (7.9).

The next key definition is inspired of [MR89], thm. C:

Definition 2.1

I: Let *G* be a *p*-group. Define the functor

 $F: \{G\text{-}CW\text{-}complexes\} \rightarrow \{Abelian \text{ groups}\}$

by

$$F(X) = [X^G; K(\mathbb{F}_q)] \times \prod_{\substack{(H) \\ H \neq G}} [X^H; K(\mathbb{F}_q) \times K(\mathbb{F}_q, W_G H)]^{W_G H}$$

where the product is over all conjugacy elasses (*H*) of proper subgroups *H* of *G*, where we recall that X^H is canonically a W_GH -space, and where W_GH acts trivially on $K(\mathbb{F}_q)$.

For the sake of simplicity we denote by L(H) the W_GH -space

 $K(\mathbb{F}_q) \times K(\mathbb{F}_q, W_G H)$, when H < G, and the *G*-space $K(\mathbb{F}_q)$, when H = G. Thus,

$$F(X) = \prod_{(H)} [X^{H}; L(H)]^{W_{G}H}$$

(This notation will normally only be used in proofs.)

II: Let G be a finite group of order prime to p. Define the functor

 $F: \{G-CW\text{-complexes}\} \rightarrow \{\text{Abelian groups}\}$

by

$$F(X) = \prod_{(H)} [X^H; K(\mathbb{F}_q)]^{W_GH}$$

where the product is over all conjugacy classes (*H*) of subgroups *H* of *G*, and where W_GH acts trivially on $K(\mathbb{F}_q)$.

Definition 2.2

F satisfies the requirements of the equivariant Brown representation theorem, [LMS], (1.5.11), in both case I and II. We thus get a *G*-space J(G, p) representing *F*, i.e.

(2.3) $F(X) \cong [X, J(G, p)]^G$,

for every finite, based *G-CW*-complex *X*. (See also [B65], thm. (2.8), the proof of which carries over to the equivariant case without complications.)

Proposition 2.4

Let H be a subgroup of G. Then

$$J(G,p)^{H} \simeq K(\mathbb{F}_{q}) \times \prod_{\substack{(K)_{H} \\ K \neq H}} K(\mathbb{F}_{q}) \times K(\mathbb{F}_{q}[W_{H}K]),$$

if we are in case I (i.e. if G is a p-group), and

$$J(G,p)^{H} \simeq \prod_{(K)_{H}} K(\mathbb{F}_{q})$$

in case II. In both cases the product runs over *H*-conjugacy classes $(K)_H$ of subgroups *K* of *H*.

Proof:

We only prove the statement in case I, as the proof in case II is virtually unchanged.

As $[X, Y^H] \cong [X \land (G/H_+), Y]^G$ for a (non-equivariant) space X, a G-space Y and a subgroup H of G, we get the following calculations:

$$[X, J(G, p)^{H}] \cong [X \land (G/H_{+}), J(G, p)]^{G} \cong \prod_{(K)_{G}} [X \land (G/H_{+}), L(K)]^{W_{G}K}$$

 $(G/H)^{K} = \emptyset$, if K is not conjugate to a subgroup of H, while

(2.5)
$$(G/H)^{K} = \prod_{i=1}^{n} N_{G}(K_{i})/(N_{G}(H_{i}) \cap H)$$

as a W_GH -set, if K is conjugate to a subgroup of H:

It suffices to consider the case where *K* is a subgroup of *H*. Let $K_1, K_2, ..., K_n$ be a full collection of *H*-conjugacy classes of subgroups of *H*, such that K_i is *G*-conjugate to *K*. As $(G/H)^K = \{gH \in G/H \mid gKg^{-1} \leq H\}$, we study the set $G_* = \{g \in G \mid gKg^{-1} \leq H\}$. $G_* = G_*^1 \coprod G_*^2 \coprod ... \coprod G_*^n$, where $G_*^i = \{g \in G \mid gKg^{-1} \text{ is } H\text{-conjugate to } K_i\}$. It is easily seen that the W_GH -set G_*^i/H is isomorphic to $N_G(K_i)/(N_G(K_i) \cap H)$, thus proving (2.5).

We now see that

$$\begin{split} & [X, J(G, p)^H] \cong \prod_{(K)_H} [X \land (H_G(K)/(N_G(K) \cap H)_+) : L(K)]^{W_G K} \cong \\ & \prod_{(K)_H} [X \land ((H_G(K)/K)/(N_H(K)/K)_+) : L(K)]^{W_G K} \cong \\ & \prod_{(K)_H} [X; L(K)^{W_H K}] \cong [X; K(\mathbb{F}_q)] \times \prod_{\substack{(K)_H \\ K \neq H}} [X; K(\mathbb{F}_q) \times K(\mathbb{F}_q[W_H K])] \end{split}$$

as it follows from (1.5). This proves the theorem.

QED

Remark 2.6

If $K \le H \le G$, and we are in case II, the inclusion

$$\prod_{j=1}^{m} K(\mathbb{F}_q) \simeq J(G, p)^H \to J(G, p)^K \simeq \prod_{j=1}^{n} K(\mathbb{F}_q)$$

is given by the matrix

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Here the a_{ii} 's are defined as in (1.9).

This follows from the proof of (2.4): Let $\pi: G/K \to G/H$ be the projection, and let $i: J(G, p)^H \to J(G, p)^K$ be the inclusion.

For a *CW*-complex *X* we now see that the diagram

$$\begin{bmatrix} X, J(G, p)^{H} \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} X \land (G/H_{+}); J(G, p) \end{bmatrix}^{G} \\ \downarrow i_{*} \qquad \qquad \downarrow (Id_{X} \land \pi)^{*} \\ \begin{bmatrix} X, J(G, p)^{K} \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} X \land (G/K_{+}); J(G, p) \end{bmatrix}^{G}$$

commutes. By using the fact that the splittings of $J(G, p)^{H}$ and $J(G, p)^{K}$ come from the various irreducible *H*- and *K*-sets, we get the result.

Proposition 2.7

 $\overline{J(G, p)}$ is an infinite *G*-loop-space, both in case I and in case II.

Proof:

Again we only prove the statement in case I.

From (1.4) it follows that L(H) is an infinite W_GH -loop space. Thus, for every W_GH -representation U_H we have an U_H 'th delooping $L(H)_{U_H}$, such that $\Omega^{U_H}(L(H)_{U_H})$ and L(H) are G-homotopy equivalent G-spaces.

Let *V* be a *G*-module. Then the *V*th delooping of J(G, p) is the representing space for the functor

$$F_V: X \to \prod_{(H)} [X^H; L(H)_{V^H}]^{W_G H}$$

where the fixed point representation V^H is considered as a W_GH -module: Let BF_V denote the representing *G*-space for F_V . Then

$$[X, \Omega^{V}BF_{V}]^{G} = [S^{V} \wedge X, BF_{V}]^{G} = \prod_{(H)} [(S^{V} \wedge X)^{H}, L(H)_{V^{H}}]^{W_{G}H} = \prod_{(H)} [(S^{V^{H}} \wedge X^{H}), L(H)_{V^{H}}]^{W_{G}H} = \prod_{(H)} [X^{H}, \Omega^{V^{H}}L(H)_{V^{H}}]^{W_{G}H} = \prod_{(H)} [X^{H}, L(H)]^{W_{G}H} = [X, J(G, p)]^{G}$$
that $\Omega^{V}BF \approx I(G, p)$

proving that $\Omega^V BF_V \simeq J(G, p)$.

QED

Definition 2.8

Let *H* be a subgroup of *G*. We then have the functor $I_H : \mathcal{E}_G^H \to \mathcal{E}_{W_GH}$, where an object of \mathcal{E}_G^H is considered as an W_GH -set.

 i_H induces the infinite $W_G H$ -loop map

 $i_{H} = \Omega B(Bi_{H}) : (Q_{G}S^{0})^{H} = \Omega B(B\mathcal{E}_{G}^{H}) \to \Omega B(B\mathcal{E}_{W_{G}H}) = Q_{W_{G}H}S^{0}$

Another description of i_H is as follows: If V is a $\mathbb{R}G$ -module, then we have the W_GH -map

$$m_{V}: Map(S^{V}, S^{V})^{H} \cong Map_{H}(S^{V}, S^{V}) \to Map(S^{V^{H}}, S^{V^{H}}),$$

which sends the *H*-map $f: S^{V} \to S^{V}$ to the map $f^{H}: S^{V^{H}} \to S^{V^{H}}$. By taking the limit over all $\mathbb{R}G$ -modules *V*, we get a $W_{G}H$ -map $m: (Q_{G}S^{0})^{H} \to Q_{W_{G}H}S^{0}$. This map *m* and the map i_{H} from above are $W_{G}H$ -homotopic maps.

Definition 2.9

The map $e(G, p): Q_G S^0 \to J(G, p)$ is defined as follows: In case I (the *p*-group case), we let the *H*'th component of

$$e(G, p) \in [Q_G S^0, J(G, p)] = \prod_{(H)} [(Q_G S^0)^H, L(H)]^{W_G H}$$

be the composite

$$(Q_G S^0)^H \xrightarrow{i_H} W_{W_G H} S^0 \xrightarrow{e_{W_G H}} K(\mathbb{F}_q, W_G H)$$
$$\xrightarrow{j \times Id} K(\mathbb{F}_q) \times K(\mathbb{F}_q, W_G H) = L(H)$$

when $H \neq G$, and the composite

$$(Q_G S^0)^H \xrightarrow{i_G} Q_1 S^0 \xrightarrow{e_1} K(\mathbb{F}_q; 1) = K(\mathbb{F}_q) = L(G)$$

when H = G. In case II we let the *H*'th component of $e(G, p) \in [Q_G S^0, J(G, p)] = \prod_{(H)} [(Q_G S^0)^H, K(\mathbb{F}_q)]^{W_G H}$

be the composite

$$(Q_G S^0)^H \xrightarrow{i_H} W_{W_G H} S^0 \xrightarrow{e_{W_G H}} K(\mathbb{F}_q, W_G H) \xrightarrow{j} K(\mathbb{F}_q, 1) = K(\mathbb{F}_q)$$

Here $j: K(\mathbb{F}_q, W_G H) \to K(\mathbb{F}_q, 1) = K(\mathbb{F}_q)$ is induced by the group homomorphism $W_H G \to 1$, and 1 denotes the trivial group.

Definition 2.10

The *G*-space Cok J(G, p) is defined as the *G*-homotopy fibre of the map $e(G, p): Q_G S^0 \to J(G, p)$

Proposition 2.11

The map $e(G, p): Q_G S^0 \to J(G, p)$ is an infinite *G*-loop map, both in case I and in case II.

Proof:

We have that the *H*'th component of e(G, p) in both cases is an infinite W_GH loop map, as it is composed of infinite W_GH -loop maps. We now proceed as in the proof of (2.7).

QED

For later use we calculate the map $e(G, p): (Q_G S^0)^G \to J(G, p)^G$, when *G* is a cyclic *p*-group. (In the next section we will describe $\Phi e(G, p): \Phi Q_G S^0 \to \Phi J(G, p)$ in the case II, where (|G|, p) = 1)

Recall from [H91], (4.5), that we have a map $e: Q(BG_+) \to K(\mathbb{F}_q[G])$ defined as follows: Consider the categories \mathcal{T}_G and $\mathcal{GL}(\mathbb{F}_q[G])$ of *G*-sets of the form n(G/1), $n \ge 0$, and projective $\mathbb{F}_q[G]$ -modules, respectively. These categories have classifying spaces $\Omega B(B\mathcal{T}_G) = Q(BG_+)$ and $\Omega B(B\mathcal{GL}(\mathbb{F}_q[G])) = K(\mathbb{F}_q[G])$.

The functor $P: \mathcal{T}_G \to \mathcal{GL}(\mathbb{F}_q[G])$, sending a *G*-set to its permutation representation: $P(n(G/1)) = \mathbb{F}_q[G]^n$, gives the infinite loop map $e = \Omega B(BP) : Q(BG_+) = \Omega B(B\mathcal{T}_G) \to \Omega B(B\mathcal{GL}(\mathbb{F}_q[G])) = K(\mathbb{F}_q[G])$.

Proposition 2.12

Let *G* be a cyclic *p*-group; $G = \mathbb{Z} / p^n$. Let $1 = G_0 \subset G_1 \subset ... \subset G_n = G$ be a complete list of the subgroups of *G*. Then the matrix of the map

$$e(G,p)^{G}: (Q_{G}S^{0})^{G} = \prod_{t=0}^{n} Q(B(G/G_{t})_{+}) \to \prod_{s=0}^{n} L(G_{s}) = J(G,p)^{G}$$

has the (s,t) 'th entry e_{st} given by

$$e_{st} = \begin{cases} p^{s-t} (j \circ e) \times e & n > s \ge t \\ p^{s-t} e & n = s \ge t \\ 0 & s < t \end{cases}$$

The map j is described in (2.9).

Proof:

Let $K \le H \le G$ be subgroups. Consider the composite

$$Q(B/G/K)_{+}) \xrightarrow{a} (Q_{G}S^{0})^{G} = ((Q_{G}S^{0})^{H})^{G/H} \xrightarrow{(i_{H})^{G/H}} (Q_{G/H}S^{0})^{G/H}$$

where *a* is the inclusion of the factor, cf. (1.2), and i_H is the map from (2.8). By considering this composite as the realization of the functor, which restricts a *G*-set of

the form m(G/K) to a G/H-set, we see that m(G/K) is mapped to $mp^{s-t}(G/H)$, where $|K| = p^t$ and $|H| = p^s$.

As e(G, p) on the fixed point sets is composition of the map above with $(j \times Id) \circ e$, we get the result.

QED

3. The Sullivan splitting

In this section we only consider case II, i.e. we assume that $(|G|, p) = 1 \cdot p$ is, as usual, an odd prime. We show that we have a *p*-local splitting

 $(SF_G)_{(p)} \simeq (J(G, p)_0)_{(p)} \times (\operatorname{Cok} J(G, p)_0)_{(p)},$

where $J(G, p)_0$ and $\operatorname{Cok} J(G, p)_0$ denote the *G*-connected covers of J(G, p) and $\operatorname{Cok} J(G, p)$, respectively, cf. [E1], p.277.

Proposition 3.1

Let p be a prime not dividing the order of the group G. Let X be a G-space, and let Y be a p-local infinite G-loop space. Then the map

 $Fix: ([X,Y]^G)_{(p)} \to ([\Phi X,\Phi Y]_{\mathcal{O}_G})_{(p)}$

sending the *G*-map $f: X \to Y$ to the \mathcal{O}_{G} -map

 $Fix(f): G/H \mapsto (f^H: X^H \to Y^H)$

is a bijection.

Proof:

This is essentially [LMS], (V.6.8) and (V.6.9): If (|G|, p) = 1, then

$$[X,Y]^{G}_{(p)} \cong \prod_{(H)} [X^{H},Y^{H}]_{(p)}^{INV}$$

where the superscript *INV* indicates that we are considering homotopy classes of 'invariant maps', [LMS] (V.6.5). But such an invariant homotopy class corresponds to a \mathcal{O}_{G} -homotopy class of \mathcal{O}_{G} -maps $\Phi X \to \Phi Y$.

QED

Proposition 3.2

For a subgroup H of G the fixed point map $e(G, p)_{(p)}^{H} : (Q_G S^0_{(p)})^{H} = \prod_{(K)_H} QS^0_{(p)} \to \prod_{(K)_H} K(\mathbb{F}_q)_{(p)} \to J(G, p)_{(p)}^{H}$

is given by the product of maps $e_{(p)}: QS^0_{(p)} \to K(\mathbb{F}_q)_{(p)}$.

Proof:

Let $K \le H \le G$ be subgroups, and denote $W_G H$ by W. The composite

The Equivariant *K*-localization of the *G*-Sphere pectrum Kenneth Hansen

$$Q(BW_HK_+)_{(p)} \xrightarrow{a} (Q_GS^0_{(p)})^H \xrightarrow{i_H} Q_WS^0_{(p)} \xrightarrow{e_W} K(\mathbb{F}_q, W)_{(p)} \xrightarrow{j} K(\mathbb{F}_q)_{(p)}$$

is zero, if K < H, and equal to $e_{(p)} : QS^{0}_{(p)} \to K(\mathbb{F}_{q})_{(p)}$, if K = H = H. This is seen by using discrete models: The *H*-set n(H/K) is mapped via $e_{W} \circ i_{H} \circ a$ to the $\mathbb{F}_{q}[W]$ module $\mathbb{F}_{q}[W/K]^{n}$. But the categorical analogue of *j* maps a $\mathbb{F}_{q}[W]$ -module *V* to its fixed point module V^{W} .

QED

We briefly review the non equivariant case, see [M77] p. 112 ff.: We have *p*-local infinite loop maps

(3.3)
$$\alpha: J_p \to SF \text{ and } e: SF \to J_p,$$

such that $e \circ \alpha : J_p \to J_p$ is a homotopy equivalence. This gives a splitting

$$(3.4) \qquad SF \simeq J_p \times \operatorname{Cok} J_p$$

where $\operatorname{Cok} J_p$ is the homotopy fibre of $e: SF \to J_p$. The work of Quillen in [Q], thm.7, p.585, shows that J_p can be identified with the connected cover of $K(\mathbb{F}_q)$ – algebraic *K*-theory of the finite field \mathbb{F}_q . Finally, the map $e: SF \to J_p$ is actually the connected cover of the map $e: Q(BG_+) \to K(\mathbb{F}_q[G])$ of (1.7), with *G* being the trivial group.

Definition 3.5

Define $\alpha(G, p) : J(G, p)_0 \to SF_G$ as follows: The \mathcal{O}_G -map $\Phi\alpha(G, p) : \Phi J(G, p)_0 \to \Phi SF_G$ is defined to be

$$\Phi\alpha(G,p)(G/H) = \prod_{(K)_H} \alpha : J(G,p)_0^H = \prod_{(K)_H} K(\mathbb{F}_q)_0 \to \prod_{(K)_H} SF = SF_G^H$$

By using (3.1), we let $\alpha(G, p) : J(G, p)_0 \to SF_G$ correspond to $\Phi\alpha(G, p) \in [\Phi J(G, p)_0, \Phi SF_G]_{\mathcal{O}_G}$.

Theorem 3.6

e(G, p) and $\alpha(G, p)$ induces a *p*-local splitting $SF_G \simeq J(G, p)_0 \times \operatorname{Cok} J(G, p)_0$

Proof:

This follows immediately from the fact that the composite $e(G, p) \circ \alpha(G, p)$ is a Ghomotopy equivalence: For each subgroup H of G the fixed point map $(e(G, p) \circ \alpha(G, p))^H$ is simply $\prod e \circ \alpha$, and from (3.4) we conclude that this is a

homotopy equivalence.

QED

4. K_G – theory of $\operatorname{Cok} J(G, p)$

In this section we show that K_G -theory of $\operatorname{Cok} J(G, p)$ vanishes. To this purpose we prove some results linking K_G -theory of a G-Space to the K-theory of the fixed point sets. These results will be applied later on.

In order to avoid finiteness assumptions, we agree to work with K-theory with coeffecients in \mathbb{Z}/p for an odd prime p. We remark that the results (4.1) and (4.2) holds for K-theory with integral coeffecients, provided that X is a finite G-CWcomplex.

Lemma 4.1

Let G be a cyclic group, X a G-CW-complex with $\overline{K}^*(X^H) = 0$ for every subgroup H of G. Then $\overline{K}_{G}^{*}(X) = 0$.

(Here $\overline{K}_{G}(-)$ is reduced K_{G} -theory – for a finite G-CW-complex X, $\overline{K}_{G}(X)$ is generated by differences of G-bundles E_F satisfying the following condition: For every $x \in X$, the fibres E_x and F_x are equivalent G_x -modules.)

Proof:

We show this using induction over the subgroups of G. Let H_1 , H_2 ..., H_n be an ordering of these subgroups, such that if $H_i \subseteq H_i$, then $i \ge j$. Since G is cyclic, every H_i is normal in G, and we let W_i denote the factor group G/H_i .

Define a filtration $X_1 \subseteq X_2 \subseteq ... \subseteq X_n$ of X by

$$X_i = \bigcup_{j=1}^i X^{H_j}$$

Since all subgroups H_j are normal in G, each X^{H_j} is a G-space, and thus X_i is a Gspace. We show inductively that $\overline{K}_{G}^{*}(X_{i}) = 0$.

For i = 1 we have that $H_1 = G$, and thus

 $\overline{K}_{G}^{*}(X_{1}) = \overline{K}_{G}^{*}(X^{G}) = \overline{K}^{*}(X^{G}) \otimes R(G) = 0.$

Assume now that $\overline{K}_{G}^{*}(X_{i-1}) = 0$. By considering the long exact sequence

$$\rightarrow \overline{K}_{G}^{*-1}(X_{i-1}) \rightarrow \overline{K}_{G}^{*}(X_{i}, X_{i-1}) \rightarrow \overline{K}_{G}^{*}(X_{i}) \rightarrow \overline{K}_{G}^{*}(X_{i-1}) \rightarrow$$

coming from the pair (X_i, X_{i-1}) , we see that $\overline{K}_G^*(X_i) \cong \overline{K}_G^*(X_i, X_{i-1})$.

Since we have the canonical group homomorphism $G \to W_i$, we get a *G*-action on the space EW_i . We have that $(EW_i)^H$ is either contactible or the empty set \emptyset , depending on whether *H* is contained in H_i or not.

The projection map between the pairs $(EW_i \times X_i, EW_i \times X_{i-1})$ and (X_i, X_{i-1}) is a *G*-homotopy equivalence, since it is an homotopy equivalence on all fixed point sets: For every subgroup H_i one of the following three conditions is satisfied:

- a) j < i, or
- b) $j \ge i$ and $H_j \subseteq H_i$, or
- c) $j \ge i$ and $H_j \not\subseteq H_i$.

If condition a) is satisfied, then $(X_i)^{H_j} = (X_{i-1})^{H_j}$, and $(X_i / X_{i-1})^{H_j}$ is contractible. Whether $EW_i^{H_j}$ is the zero set or contractible, the set $(EW_i \times X_i / EW_i \times X_{i-1})^{H_j}$ is contractible.

If condition b) is satisfied, then $(EW_i)^{H_j}$ is contractible, and the claim is trivial. If condition c) is satisfied, then $(EW_i)^{H_j} = \emptyset$, and $(EW_i \times X_i / EW_i \times X_{i-1})^{H_j}$ is contractible. But $(X_i)^{H_j} = (X_{i-1})^{H_j} \cup (X^{H_i})^{H_j}$, and the set $(X^{H_i})^{H_j} = X^{H_k}$ is contained in $(X_{i-1})^{H_j}$; here H_k is the smallest subgroup of *G*-containing the subgroups H_i and H_j , and since $H_k \supset H_i$, we know that k < i, and $X^{H_k} \subseteq X_{i-1}$.

We thus have $\overline{K}_{G}^{*}(X_{i}) \cong \overline{K}_{G}^{*}(X_{i}, X_{i-1}) \cong \overline{K}_{G}^{*}(EW_{i} \times X_{i}, EW_{i} \times X_{i-1})$

We note that *H* acts trivially on the spaces EW_i and X_i/X_{i-1} . [MR84], (1.3.12), stating that if *G* is an Abelian group, Γ a subgroup of G, then there is an isomorphism $K_G(X^{\Gamma}) \cong K_{G/\Gamma}(X^{\Gamma}) \otimes R(\Gamma)$,

reduces the problem to showing that $\overline{K}_{W_i}^*(EW_i \times X_i, EW_i \times X_{i-1})$ is zero. By using the long exact sequence on the pair $(EW_i \times X_i, EW_i \times X_{i-1})$, we see that it suffices to show that the restriction map $\overline{K}_{W_i}^*(EW_i \times X_i) \to \overline{K}_{W_i}^*(EW_i \times X_{i-1})$ is an isomorphism.

 W_i acts freely on EW_i , and by using [S68c] (2.1) it suffices show that the map $\overline{K}^*(EW_i \times_{W_i} X_i) \rightarrow \overline{K}^*(EW_i \times_{W_i} X_{i-1})$ is an isomorphism.

We have the homotopy commutative diagram of fibrations

$$\begin{array}{ccccc} X_i & \rightarrow & X_{i-1} \\ \downarrow & & \downarrow \\ EW_i \times_{W_i} X_i & \rightarrow & EW_i \times_{W_i} X_{i-1} \\ \downarrow & & \downarrow \\ BW_i & = & BW_i \end{array}$$

Using a Mayer-Vietoris argument, we conclude that $\overline{K}^*(X_i) = \overline{K}^*(X_{i-1}) = 0$. The Atiyah-Hirzebruch spectral sequence and the comparison theorem for spectral sequences show that $\overline{K}^*(EW_i \times_{W_i} X_i) \to \overline{K}^*(EW_i \times_{W_i} X_{i-1})$ is an isomorphism.

QED

Lemma 4.2 ([MC], cor. C.)

Let *G* be a finite group, *p* an odd prime. Let *X* be a *G*-*CW*-complex, such that $\overline{K}_{C}^{*}(X) = 0$ for every cyclic subgroup of *G*. Then $\overline{K}_{G}^{*}(X) = 0$.

Proposition 4.3

Let $\operatorname{Cok} J(G, p)$ be the space from (2.10). Then $\overline{K}_{G}^{*}(\operatorname{Cok} J(G, p); \mathbb{Z}/p)$ vanishes.

Proof:

According to (4.1) and (4.2) it suffices to show that $e(G, p)^{K} : (Q_{G}S^{0})^{K} \to J(G, p)^{K}$ is an $K^{*}(-;\mathbb{Z}/p)$ -equivalence, when G is a cyclic group, and K is a subgroup of G.

In case I, the *p*-group case, we use (2.12) and the fact, that $(j \times Id) \circ e : Q(B\Gamma_+) \to K(\mathbb{F}_q) \times K(\mathbb{F}_q, \Gamma)$

is a $K^*(-;\mathbb{Z}/p)$ -equivalence, when Γ is a cyclic *p*-group, cf. (1191), (4.18).

In the case where |G| is invertible in \mathbb{Z}/p , we use the definition (3.2) and the

fact that $e: QS^0 \to K(\mathbb{F}_q)$ is a $K^*(-; \mathbb{Z}/p)$ -equivalence, cf. [MM], (5.22).

QED

From (2.11) we know that $\operatorname{Cok} J(G, p)$ is an infinite *G*-loop space. We want to show that K_G -theory of the corresponding *G*-spectrum vanishes.

Lemma 4.4

Let *X* be an infinite *G*-loop space with $\overline{K}^*(X^H) = 0$ for every subgroup *H* of *G*. Let *V* be an $\mathbb{R}G$ -module. Then the *V*th delooping X_V of *X* satisfies $\overline{K}^*(X_V^H) = 0$ for every subgroup *H*. Especially, $\overline{K}_G^*(X) = 0$.

Proof:

This follows from (the dual) of the *K*-theoretical Rothenberg-Steenrod spectral sequence, cf. [Ho], p.5 (the dualization is carried through in [McC], p.242 ff):

 $E^2 = \operatorname{Tor}_{K_*(X)}(\mathbb{Z}_{(p)}, \hat{\mathbb{Z}}_p) \Longrightarrow K_*(BX) = E^{\infty}$

QED

Corollary 4.5

The K_G -theory with coefficients in \mathbb{Z}/p of the spectra $\operatorname{Cok} J(G, p)$ vanishes.

Corollary 4.6

The map of G-spectra $e(G, p): S_G \to J(G, p)$ of (2.9) is an $K_G(-;\mathbb{Z}/p)$ -equivalence.

We here denote the *G*-sphere spectrum with S_G , and we denote the *G*-spectra corresponding to the infinite *G*-loop spaces J(G, p) and $\operatorname{Cok} J(G, p)$ by the same symbols, i.e. by J(G, p) and $\operatorname{Cok} J(G, p)$

5. Equivariant Bousfield localization

In this section we briefly describe the properties of equivariant Bousfieldlocalization. The formal development of the theory will not be done here, as the nonequivariant results of [B79a] and [B79b] immediately can be generalized to the equivariant case:

We work in the category $Ho_G^{\ S}$ of *G*-*CW*-spectra as described in [LMS], p.27 ff. This is the homotopy category of spectra indexed over the complete *G*-universe \mathcal{U} consisting of countably many copies of the regular representation $\mathbb{R}[G]$. Every object in $Ho_G^{\ S}$ is assumed to be a *G*-cell spectrum, i.e. it has a decomposition into stable *G*-cells of the form $\Sigma^n(S_G \wedge (G/H)_+)$, where *n* ranges over the integers, and *H* over the subgroups of *G*.

Definition 5.1

Let *A* be a *G*-spectrum. A *G*-spectrum *X* is *A*-acyclic, if $A^*(X) = 0$. A map $f: X \to Y$ in Ho_G^{S} is an *A*-equivalence, if the map $A^*(f): A^*(X) \to A^*(Y)$ is an isomorphism. The *G*-spectrum *B* is *A*-local if, for every *A*-equivalence $f: X \to Y$, the map $f^*: [Y, B]_* \to [X, B]_*$ is an isomorphism. Finally, the map $f: X \to Y$ is an *A*-localization of *X*, if *f* is an *A*-equivalence, and *Y* is *A*-local.

Analogous to [B79b] (1.1), we have

Theorem 5.2

Every G-spectrum X in Ho_G^{S} has an A-localization, denoted by X_A or $L_A X$. This A-localization is unique up to equivalence. The most obvious examples of equivariant Bousfield localizations are localization with respect to Eilenberg-MacLane speetra, cf. [LMM9. Especially, if $X = H_G(\mathbb{Z}_{(p)}, 0)$, where $\mathbb{Z}_{(p)}$ denotes the constant coeffecient system $G/H \mapsto \mathbb{Z}_{(p)}$, then L_X is the localization at the prime *p* of [MMT]. Similarly, localization with respect to $H_G(\mathbb{F}_q, 0)$ gives the *p*-adic completion of [M81].

Both these localization functors have the property that they preserve the formation of fixed point sets:

Proposition 5.3

Let X be one of the spectra $H_G(\underline{\mathbb{Z}}_{(p)}, 0)$ or $H_G(\underline{\mathbb{F}}_q, 0)$. Let A be any G-spectrum, and let M be a subgroup of G. Then

 $L_{X^M}(A^M) \simeq (L_X A)^M$

Proof:

This is thm. 10 of [MMT] and thm, 14 of [M81].

QED

For general spectra X, the statement of (5.3) does probably not hold. We therefore introduce a variant of K_G -theory, which in the equivariant case is more manageable:

Definition 5.4

Let \mathcal{K}_G be the *G*-spectrum defined by $\mathcal{K}_G = \bigvee_{(H)} K \wedge (G/H_+)$, where the wedge is over all conjugacy classes of subgroups of *G*, *K* is the spectrum representing ordinary *K*-theory, and G/H_+ is the usual *G*-space.

Proposition 5.5

1) X is \mathcal{K}_{G} -acyclic if and only if $K_{*}(X^{H}) = 0$ for every subgroup H of G.

2) Every \mathcal{K}_G -local *G*-spectrum is K_G -local.

Proof:

1) is obvious. In order to prove 2), let X be a \mathcal{K}_G -acyclic G-spectrum. This implies that for every subgroup H of G we have that $[K \wedge (G/H_+), X]^G = [K, X^H] = 0$. Thus X^H is K-local, and $K^*(X^H) = 0$. (3.2) now implies that $K_G(X) = 0$.

QED

The Equivariant *K*-localization of the *G*-Sphere pectrum Kenneth Hansen

It follows immediately from the definition (5.4) that

Proposition 5.6

Let X be a G-spectrum, M a subgroup of G. Then $(L_{\mathcal{K}_{\mathcal{K}}}(X))^{M} \simeq L_{\mathcal{K}}(X^{M}).$

6. The equivariant K-localization of the G-sphere spectrum

In this section we calculate the \mathcal{K}_{G} -localization of the equivariant spherespectrum S_{G} . Again, all spectra are assumed to be *p*-local, and we work with the two cases:

I: *G* is a *p*-group, and

II: *G* is a finite group with (p, |G|) = 1.

Out starting point is (4.6), which we immediately generalize to *p*-adic coeffecients:

Proposition 6.1

The map of G-spectra $e(G, p): S_G \to J(G, p)$ of (2.9) is an $\mathcal{K}_G(-; \hat{\mathbb{Z}}_p)$ -equivalence.

Proof:

By using the Bockstein sequences coming from the coeffecient sequences $0 \rightarrow \mathbb{Z}/p^{n-1} \rightarrow \mathbb{Z}/p^n \rightarrow \mathbb{Z}/p \rightarrow 0$,

we see inductively that e(G, p) is a $\mathcal{K}_G(-;\mathbb{Z}/p^n)$ equivalence, i.e. for every subgroup H of G the map $e(G, p)^H : S_G^{H} \to J(G, p)^H$ is a $K(-;\mathbb{Z}/p^n)$ -equivalence.

Let *X* be a spectrum, and let S^0A be the Moore spectrum for the Abelian group *A*, see [A74], p.200. We have that $S^0\hat{\mathbb{Z}}_p \cong \underline{\lim}S^0\mathbb{Z}/p^n$, and thus

$$K^*(X;\hat{\mathbb{Z}}_p) \cong [X;K \wedge S^0 \hat{\mathbb{Z}}_p]_* \cong [X \wedge DS^0 \hat{\mathbb{Z}}_p;K]_* \cong [X \wedge \underline{\lim} DS^0 \mathbb{Z} / p^n;K]_*,$$

where DZ is the Spanier-Whitehead dual of the spectrum Z.

The Milnor sequence applied on the space $X \wedge \underline{\lim}DS^0\mathbb{Z}/p^n$ now gives the natural exact sequence

 $0 \to \underline{\lim}^{1} K^{*-1}(X; \mathbb{Z}/p^{n}) \to K^{*}(X; \hat{\mathbb{Z}}_{p}) \to \underline{\lim} K^{*}(X; \mathbb{Z}/p^{n}) \to 0$

By applying this sequence on the map $e(G, p)^H : S_G^H \to J(G, p)^H$, we obtain the diagram

$$0 \to \underline{\lim}^{1} K^{*-1}(J(G,p)^{H}; \mathbb{Z}/p^{n}) \to K^{*}(J(G,p)^{H}; \hat{\mathbb{Z}}_{p}) \to \underline{\lim} K^{*}(J(G,p)^{H}; \mathbb{Z}/p^{n}) \to 0$$

As the first and last vertical arrows are isomorphisms, we conclude that the middle arrow is an isomorphism, too, and the result now follows from (5.5).

QED

This almost calculates the \mathcal{K}_G -localization of S_G . But there are two difficulties: J(G, p) is not \mathcal{K}_G -local G-spectrum, and e(G, p) is not a $\mathcal{K}_G(-;\mathbb{Q})$ -equivalence. We remedy this:

Recall from [FHM], (0.5), that we have a cofiber sequence

(6.2)
$$K(\mathbb{F}_q, G) \to K_G < 0, \infty > \xrightarrow{\psi^q - 1} K_G < 2, \infty >$$

where $K_G < n, \infty >$ is the *n*-connected cover of the *G*-spectrum K_G . Define $\mathcal{K}(\mathbb{F}_q, G)$ as the homotopy fibre of $\psi^q - 1: K_G \to K_G$.

We remark that $\mathcal{K}(\mathbb{F}_q, G)$ is a K_G -local *G*-spectrum, as K_G is K_G -local. Furthermore, $\mathcal{K}(\mathbb{F}_q, G)$ is \mathcal{K}_G -local: For a subgroup *H* of *G* we have the cofiber sequence

$$\mathcal{K}(\mathbb{F}_q,G)^H \to K_G^{H} \xrightarrow{\psi^q - 1} K_G^{H}$$

It follows from [FHM], (3.1), that K_G^{H} is equivalent to $\bigvee_{Irr(H)} K$, where the wedge is over all inequivalent, irreducible $\mathbb{C}H$ -modules. (*K* is the (non-equivariant) spectrum representing ordinary complex *K*-theory). As K_G^{H} is *K*-local, $\mathcal{K}(\mathbb{F}_q, G)^{H}$ is *K*-local, and it follows that $\mathcal{K}(\mathbb{F}_q, G)$ is \mathcal{K}_G -local.

Proposition 6.3

The map $a: K(\mathbb{F}_q, G) \to \mathcal{K}(\mathbb{F}_q, G)$ coming from the diagram

is a $\mathcal{K}_{G}(-;\hat{\mathbb{Z}}_{p})$ -equivalence.

Proof:

We show that for every subgroup *H* of *G* the map $a^H : K(\mathbb{F}_q, G)^H \to \mathcal{K}(\mathbb{F}_q, G)^H$ is a $K_*(-;\mathbb{Z}/p)$ -equivalence.

Let *F* denote the fibre of a^H . It then suffices to show that $K_*(F;\mathbb{Z}/p)$ vanishes. Let F_m denote the *m*-connected cover of *F*. We have the sequence of maps

$$0 = F_1 \to F_0 \to F_{-1} \to F_{-2} \to \dots$$

and $F = \underline{\lim} F_{-n}$. As $K_*(F; \mathbb{Z}/p) = \underline{\lim} K_*(F_{-n}; \mathbb{Z}/p)$, it suffices to show that $K_*(F_{-n}; \mathbb{Z}/p) = 0$.

This is done inductively: For n < 0, F_{-n} is the zero spectrum. We obtain F_{-n} from F_{-n+1} via the cofiber sequence

 $F_{-n+1} \to F_{-n} \to H(\pi_{-n}(F); -n)$

where $H(\pi_{-n}(F); -n)$ is the Eilenberg-MacLane spectrum with the sole non-zero homotopy group

 $\pi_{-n}(H(\pi_{-n}(F);-n)) = \pi_{-n}(F)$

Now, $K_*(H(\pi_{-n}(F);-n);\mathbb{Z}/p) = K_*(H(\pi_{-n}(F)\otimes_{\mathbb{Z}}\mathbb{Z}/p;-n) = 0)$, as it follows from [AH], thm. 1, and inductively we see that $K_*(F_{-n};\mathbb{Z}/p) = 0$.

QED

Definition 6.4

Assume we are in case 1, i.e. that G is a p-group. Let $\mathcal{J}(G, p)$ be the G-spectrum representing the functor F from Ho_G^{S} to Abelian groups given by

$$\mathcal{F}(X) = \prod_{(H)} [X^H, \mathcal{L}(H)]^{W_G}_*$$

Here $\mathcal{L}(H)$ is the W_GH -spectrum $\mathcal{K}(\mathbb{F}_q) \times \mathcal{K}(\mathbb{F}_q, W_GH)$ in case $G \neq H$, and $\mathcal{L}(G)$ is $\mathcal{K}(\mathbb{F}_q)$.

Let
$$b: J(G, p) \to \mathcal{J}(G, p)$$
 be the map representing the natural transformation
 $F(X) = \prod_{(H)} [X^H, L(H)]^{W_G H} \xrightarrow{\Pi \overline{a}_*} \prod_{(H)} [X^H, \mathcal{L}(H)]^{W_G H} = \mathcal{F}(X)$

where \overline{a} is the map $L(H) = K(\mathbb{F}_q) \times K(\mathbb{F}_q, W_G H) \xrightarrow{a \times a} \mathcal{K}(\mathbb{F}_q) \times \mathcal{K}(\mathbb{F}_q, W_G H) = \mathcal{L}(H)$ when $G \neq H$ i#11, and $\overline{a} : L(G) = K(\mathbb{F}_q) \to \mathcal{K}(\mathbb{F}_q) = \mathcal{L}(G)$ is simply *a* itself.

In case II, where (|G|, p) = 1, we let $\mathcal{J}(G, p)$ be the *G*-spectrum representing the functor \mathcal{F} from Ho_G^{s} to Abelian groups given by

$$\mathcal{F}(X) = \prod_{(H)} [X^H, \mathcal{K}(H)]^{W_G H}_*$$

and where $\mathcal{K}(\mathbb{F}_q) = K(\mathbb{F}_q, 1)$. In this case, the map $b: J(G, p) \to \mathcal{J}(G, p)$ is representing the natural transformation

$$F(X) = \prod_{(H)} [X^H, K(H)]^{W_G H} \xrightarrow{\Pi \bar{a}_*} \prod_{(H)} [X^H, \mathcal{K}(H)]^{W_G H} = \mathcal{F}(X)$$

Proposition 6.5

1)
$$b: J(G, p) \to \mathcal{J}(G, p)$$
 is a $\mathcal{K}_{G}(-; \hat{\mathbb{Z}}_{p})$ -equivalence, and

2) $\mathcal{J}(G, p)$ is \mathcal{K}_{G} -local.

Proof:

1) follows immediately from (6.3) by calculating the action of b at the fixed point

spectra – cf. (2.4).

In order to show 2), let X be a \mathcal{K}_{G} -acyclic G-spectrum. Then we have for every subgroup H of G and every subgroup V of $W_{G}H$ that $(X^{H})^{V}$ is K-acyclic. It follows from (4.1) that X^{H} is $K_{W_{G}H}$ -acyclic, and $[X^{H}, \mathcal{K}(\mathbb{F}_{q}) \times \mathcal{K}(\mathbb{F}_{q}, W_{G}H)]_{*}^{W_{G}H} = 0$, as both $\mathcal{K}(\mathbb{F}_{q})$ and $\mathcal{K}(\mathbb{F}_{q}, W_{G}H)$ are $K_{W_{G}H}$ -local. Thus $[X, \mathcal{J}(G, p)]_{*}^{G} = 0$.

The proof in case II is similar.

QED

We now study the rational type of S_G . We recall from (1.2) that the sole nonzero rational homotopy group of S_G is in dimension 0, and that $\underline{\pi}_0(S_G; \mathbb{Q}) = \underline{A} \otimes \mathbb{Q}$, where the \mathcal{O}_G -group $\underline{A} \otimes \mathbb{Q}$ is given by $\underline{A} \otimes \mathbb{Q}(G/H) = A(H) \otimes \mathbb{Q}$. A(H) here denotes the Burnside ring of the finite group H.

In the *p*-group case (case I) we have that the *G*-spectrum $\mathcal{K}(\mathbb{F}_q, G)$ has two nonzero rational homotopy groups, as it follows from (6.2). Both $\underline{\pi}_0(\mathcal{J}(\mathbb{F}_q, G); \mathbb{Q})$ and $\underline{\pi}_{-1}(\mathcal{J}(\mathbb{F}_q, G); \mathbb{Q})$ equal $(\underline{A} \oplus \underline{R}'_{\mathbb{F}_q}) \otimes \mathbb{Q}$, where the \mathcal{O}_G -group $(\underline{A} \oplus \underline{R}'_{\mathbb{F}_q}) \otimes \mathbb{Q}$ is given by

 $(\underline{A} \oplus \underline{R}'_{\mathbb{F}_q})(G/H) = \begin{cases} A(H) \oplus R_{\mathbb{F}_q}(H) & H \neq G \\ \\ A(G) & H = G \end{cases}$

 $R_{\mathbb{F}_q}(H)$ is the Grothendieck group of $\mathbb{F}_q[H]$ -modules. It follows that for a subgroup H of G the spectrum $(\mathcal{J}(G, p))^H = \prod_{(K)_H} \mathcal{L}(H)^{W_H K}$ only has non-zero rational

homotopy in dimensions -1 and 0.

Similarly, in case II $\mathcal{J}(G, p)$ has non-zero rational homotopy only in dimensions -1 and 0, and both are given by $\underline{A} \otimes \mathbb{Q}$.

Definition 6.6

Let $\mathcal{J}'(G, p)$ be the homotopy fibre of the map

$$I: \mathcal{J}(G, p) \to H_G(\underline{\pi}_{-1}(\mathcal{J}(G, p)); \mathbb{Q}); -1),$$

which induces the identity map at $\underline{\pi}_{-1}(\mathcal{J}(G, p); \mathbb{Q}) = \underline{H}_{-1}(\mathcal{J}(G, p); \mathbb{Q})$. (The Hurewicz map $H : \underline{\pi}_{-1}(\mathcal{J}(G, p); \mathbb{Q}) \to \underline{H}_{-1}(\mathcal{J}(G, p); \mathbb{Q})$ is an isomorphism, as it follows from [Sp], (9.6.15) – Hurewicz' theorem modulo the Serre class consisting of finite, Abelian groups.)

Let e'(G, p) denote the lift of $b \circ e(G, p) : S_G \to \mathcal{J}(G, p)$ to $\mathcal{J}'(G, p) - I \circ b \circ e(G, p) = 0$ as $\pi_{-1}(S_G) = 0$ and thus $b \circ e(G, p)$ lifts.

The Equivariant *K*-localization of the *G*-Sphere pectrum Kenneth Hansen

Proposition 6.7

 $\mathcal{J}'(G,p)$ is a \mathcal{K}_G -local *G*-spectrum. $e'(G,p): S_G \to \mathcal{J}'(G,p)$ is a $\mathcal{K}_G(-;\hat{\mathbb{Z}}_p)$ -equivalence.

Proof:

 $H_G(\underline{\pi}_{-1}(\mathcal{J}(G, p); \mathbb{Q}); -1)$ is a \mathcal{K}_G -local spectrum, as every rational spectrum is *K*-local, see [Mi], p.207. From (6.5.2) it now follows that $\mathcal{J}'(G, p)$ is \mathcal{K}_G -local.

Furthermore, as $H_G(\underline{\pi}_{-1}(\mathcal{J}(G, p); \mathbb{Q}); -1)$ vanishes *p*-adically, we conclude that the map $\mathcal{J}'(G, p) \to \mathcal{J}(G, p)$, and hence the lifted map $e'(G, p): S_G \to \mathcal{J}'(G, p)$ are $\mathcal{K}_G(-; \hat{\mathbb{Z}}_p)$ -equivalences.

QED

Definition 6.8

Let *G* be a *p*-group. Define the \mathcal{O}_G -map $\underline{P}: \underline{\pi}_0(\mathcal{J}'(G, p)) \to \underline{R}_{\mathbb{F}_q}(G) \otimes \mathbb{Q}$ as follows:

For a proper subgroup *H* of *G*, $\underline{P}(G/H)$ is the composite

$$\pi_0(\mathcal{J}'(G,p)) = A(H) \oplus R_{\mathbb{F}_a}(H) \xrightarrow{\pi} R_{\mathbb{F}_a}(H) \xrightarrow{r} R_{\mathbb{F}_a}(H) \otimes \mathbb{Q},$$

where π is the projection onto the second factor, while *r* is the 'rationalization map'. For H = G we let $\underline{P}(G/G)$ be the zero map.

Definition 6.9

Assume *G* is a *p*-group. The \mathcal{O}_{G} -map $\underline{P}(G)$ of (6.8) corresponds to a *G*-map $\mathcal{P}: \mathcal{J}'(G, p) \to H_{G}(\underline{R}_{\mathbb{F}_{q}}(G) \otimes \mathbb{Q}; 0)$

Define the *G*-spectrum $\overline{\mathcal{J}}(G, p)$ as the homotopy fibre of \mathcal{P} .

In case II, where (|G|, p) = 1, we define $\overline{\mathcal{J}}(G, p)$ to be the *G*-spectrum $\mathcal{J}'(G, p)$ of (6.6).

Theorem 6.10

The $\mathcal{K}_{G}(-;\mathbb{Z}_{(p)})$ -localization of S_{G} is $\overline{\mathcal{J}}(G,p)$.

Proof:

It follows from the definition of $\overline{\mathcal{J}}(G, p)$ that e'(G, p) factors through $\overline{\mathcal{J}}(G, p)$, and that this factored map is a $\mathcal{K}_G(-;\mathbb{Z}/p)$ -equivalence. A direct inspection reveals that this factored map is a $\mathcal{K}_G(-;\mathbb{Q})$ -equivalence.

QED

References

- [A74] J.F.Adams: Stable homotopy and generalized homology. University of Chicago Press, 1974
- [Ap] T.M.Apostol: Introduction to Analytic Number Theory. Springer, 1984.
- [AH] D.W.Anderson, L.Hodgkin: The K theory of Eilenberg MacLane complexes. Topology 7 (1968), 317-329.
- [B79a] A.K.Bousfield: The Boolean algebra of spectra. Comm.Math.Helv. 54 (1979), 368 377.
- [B79b] A.K.Bousfield: The localization of spectra with respect to homology. Topology **18** (1979), 257-281.
- [B65] E.H.Brown: Abstract homotopy theory. Trans. AMS **119** (1965), 79-85.
- [El] A.D.Elmendorf: Systems ol Fixed Point Sets. Trans.Amer.Math.Soc., **277** (1983), 275-284.
- [FHM] Z.Fiedorowicz,H.Hauschild,J.P.May: Algebraic *K*-theory. Proc.Oberwolfach 1980. Springer LNM 967
- [H91] K.Hansen: The *K*-localizations of some classifying Spaces. Preprint, Århus, 1991.
- [Ho] L.H.Hodgkin and V.P.Snaith: Topics in *K*-theory. Springer, LNM 496.
- [LMM] L.G.Lewis, J.P.May and J.McClure: Ordinary *RO*(*G*) -graded cohomology. Bull. AMS **4** (1981), 208 211.
- [LMS] L.G.Lewis, J.P.May and M.Steinberger: Equivariant Stable Homotopy Theory. Springer, LNM 1213.
- [MM] I.Madsen and R.J.Milgram: The Classifying Spaces for Surgery and Cobordism of Manifolds. Princeton University Press, 1979.
- [MR84] I.Madsen and M.Rothenberg: Periodic Maps of Spheres of Odd Order. Preprint, Århus, 1984.
- [MR89] I.Madsen and M.Rothenberg: On the Classification of *G*-spheres II: PL Automorphism Groups. Math.Scand. **64** (1989), 161 218.
- [McC] J.McCleary: User's Guide to Spectral Sequences. Publish or Perish, 1984.
- [MC] J.E.McClure: Restriction Maps in Equivariant *K*-Theory. Topology **25** (1986), 399-109.
- [M77] J.P.May: E_{∞} -Ring Spaces and E_{∞} -Ring Spectra. Springer, LNM 577.
- [M81] J.P.May: Equivariant Completion. Bull.London Math.Soc. **14** (1982) 231-237.
- [MMT] J.P.May, J.McClure and G.Triantafihou: Equivariant Localization. Bull.London Math.Soc. **14** (1982) 223 230.
- [Mi] G.Mislin: Localization with respect to *K*-theory. J.Pure Appl. Alg. **10** (1977), p.201 213.
- [Q] D.Quillen: On the Cohomology and *K*-theory of the General Linear Groups over a Finite Field. Ann.Math. **96** (1972), 552-580.
- [S68] G.Segal: Equivariant K theory. MIES **34** (1968), 129-151.
- [S70] G.Segal: Equivariant Stable Homotopy Theory. Actes Congres intern. Math, 1970, Tome 2, 59-63.
- [S74] G.Segal: Categories and Cohomology Theories. Topology, **13** (1974), 293-312.
- [Sh] K.Shiuiakawa: Infinite Loop *G*-Spaces Associated to Monoidal Graded Categories. Publ.RIMS.Kyoto Univ **25**,(1989), 239-262.
- [Sp] E.H.Spanier: Algebraic Topology, McGraw-Hill, 1966.