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In this paper the K-theoritical localizations of the suspension spectra for the spaces
CP” and BZ/ p", where p is an odd prime, are calculated. The result in the case af CP”

is already known; it is to be found in [R], (9.2). The methods used here are completely
new, although.
This paper is split into four parts; the first two which contains specific calculations

of K-homology groups. In section 1 K-theory of CP” and BZ/ p" is described, while
section 2 calculates K-homology of the spectra K and K(IF,) . These last calculations rely
heavily on the result of Adams, [A74], p. 100, describing the behaviour of the Bott-map
in K-theory.

In section 3 the K-localizations of X*CP* and of the corresponding infinite loop
space Q(CP™) are calculated, and finally in section 4 we relate the K-localization of
Y”BZ/ p" to algebraic K-theory of the group ring F,[Z/ p"].

Throughout the paper we work within the category of spectra as described in [A74].
Especially, we use the following notation:

If X is a spectrum and n an integer, we denote the n-connected cover of X by
X <n,o0>.

K is the periodic spectrum representing complex K-theory, and we define K-
homology of the spectrum X to be K.(X)=m.(K A X).

If X is a topological space, then we denote by ~”X the suspension spectrum of X.
Y”X is defined to have the n-th space (£X), =2"X for n>0, and if n is negative,

then (£7X), is the trivial space.

I would like to thank Marcel Bokstedt for suggesting the present line of proof and
for much help in carrying out. I would also like to thank my advisor Ib Madsen for help
with the project, in particular in connection with 83 below.

1. K-theory of CP* and BZ/ p"

In this section we study the K-theory of the spaces CP” = BS" and BZ/ p" , where
p is a fixed, odd prime.

Proposition 1.1 ([A62], (7.2))
Let n>0be an integer. Then

K°(CP") = Z[E]/("") and K*(CP")=0,
where & = H —1is the reduced Hopf bundle.

By applying the universal coefficient sequence
(1.2) 0 Ext,(K™(X),Z/p) = K.(X;Z/I p) = Hom, (K" (X),Z/ p) -0
of [Y], p.312 and 320, we obtain
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Proposition 1.3
(1) K,(CP";Z/p) isafree Z/ p-module generated by B,,B,, ..., B, , where B, is the

dual of &' under the isomorphism K (CP";Z/ p) = Hom, (K°(CP"),Z/ p), i.e.
(1.4) <ai)Bj >:8ij

(2) K,(CP"Z/p)=0
By taking the limit we get

Corollary 1.5
(1) K,(CP*;Z/p) isafree Z/ p-module with the countable basis {B,,p,,...}.

2) K,(CP*;Z/p)=0.

Let me N. Consider the map i, : S' — S*:exp(2rix) — exp(2rimx) . Define
u, :CP* — CP” as Bp, , where we recall that CP” = BS".

Proposition 1.6
w,, restrists to a map CP" — CP". The effect of B, in K-homology with

coefficients in Z/ p is as follows: (Mps )-(B;) =B, . if p*dividesi, and is zero otherwise.

ilp

Proof:
The composite CP" — CP” —t~— CP” homotopic to a cellular map. As the 2n-
skeleton of CP” is CP", the image p_ (CP") is contained in CP", giving the map

u,:CP"— CP".
Letting H be the Hopf-bundle, we see that u_“(H)=H". By using the binomial
theorem, we get

(1,)(E) =) (H-)=H" -1=(H -1 =&" (mod p)
The duality between the &''s and the B ;'S gives
<€ (1 )By > =< ()G By >=<E B, >

which is non-zero if and only if m=rp®.
QED

We now turn to the case of BZ/ p". For the sake of clarity we let G denote Z/ p",
and we let g be the order of G, g = p".
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Recall that we have the G-action on S*"** given as follows: S*"** is the unit sphere
in C"*. The element a+ gZ of G acts on (z,,2,,...,z,) € C""* by
(a+9Z)(zy,2,,..,2,) =(n°Z,M"Z;,..,M"2Z,)
where 1 =exp(2ni/g) . This G-action restrists to S*"**, and the corresponding orbit
space is the lens space denoted by L"(g).
The inclusions S?™* — S gives inclusions L"(g) — L"**(g), and it is readily
seen that the space IiLn L"(g) is homotopy equivalent to BG .

Furthermore, the standard map 3 :G — S':a+ gZ — n® gives rise to maps
By :L'(g) > CP" and By :BG — CP™.
Let B, be the dual to &' = (BE)"(H —1)'; i.e. we have the relation

(1.7) <E.B;>=3;.

Proposition 1.8
Let <By,,B,,.-- By, > denote the Z/ p-module freely generated by B,B,,....B, ;-

Then
M Ko(BG;Z/ p) =<By,Bys-sBy s > and

(ii) K,(BG;Z/ p)=0.

Proof:
This proof is, as that of (1.3), essentially an application of the universal coefficient

sequence, (1.2): K°(L"(g)) is shown in [Ch], thm. 3, to be
K°(L"(9)) = ZIE) /(1 +&)° —1,E™)
For n>g we have that K°(L"(g)) is a free Z -module on the generators £°, &', ..., 97",
By using (1.2) and by taking the limit, we obtain K,(BG;Z/ p).
An argument using the Atiyah-Hirzebruch spectral sequence shows that
K*(L"(g)) = Z, and that this Z originates in the top conomology H*""'(L"(g))=Z,

which is the only non-zero odd-dimensional cohomology of L"(g) . But the restriction
map K'(L"(g)) — K*(L"(g)) is zero, and we see that K,(BG;Z/ p) vanishes.
QED

2. K-theory of topological and algebraic K-theory

In this section we continue our calculations. We calculate the K-homology with
coefficients in Z/ p of the spectra K and K(F, ), where K is the (periodic) spectrum

representing complex K-theory, and where the spectrum K(F, ) is algebraic K theory of

the finite field with |, elements, T, ; I; is assumed to be of the form |, = IP"="" fori>0
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and I, =1. | is here an odd prime, such that | + p°Z generates the unit group (Z/ p*)* -

such primes exist according to a theorem of Dirichlet, cf. [Ap], (7.9).
This last calculation is to be used in 84 — we want to calculate K.(K(F[G];Z/ p),

where G is a cyclic p-group; G =Z/ p", and we have the splitting of (4.1):
KRG =] [K(F,)
i=0

We recall from [A74], p.204, that the spectrum K has the spaces K, =BU and
K,,.,=U.Themap B:3°K,, =2°BU — BU =K, _, is the adjoint of the Bott

isomorphism BU xZ — Q°BU .
Denote by B, also the image of B, € K,(BU (1);Z/ p) = K,(CP*;Z/ p) under the

map i, : BU (1) - BU given by the Hopf-bundle. Then we have from [A74], p.47:

Proposition 2.1
(i) K,(BU:Z/p)=Z/p[B,.B,...]
(i) K,(BU;Z/p)=0.

Theorem 2.2
The map i.: K,(BU;Z/ p) > K,(BU;Z/ p) is surjective. The kernel of i. is

additively generated by all elements decomposable in the B,'s and by the family {y }
np+p-1

where v, =(-1)" > (-1)'B;.

i=np

n>0"

Proof:
Write X for the suspension spectrum of the space BU. The periodicity map B induces

aspectrummap B: X — XX , and K is the direct limit spectrum of the system
) I I
Thus, K,(K;Z/ p) is the direct limit of
K,(BU;Z/ p)——>K,(BU;Z/ p)—>—...
The map B. is described in [A74], p. 100: B. annihilates elements decomposable in
B;'s, and
(2.3) B.(B;) =u(jB; + (j +1)B;,,) +decomposables, j>0
where u =, (K) is the generator (Bott element), cf. [A74], p.38.
Clearly i. maps all decomposables to zero, and so we need only study B, on the
subspace A of K,(BU;Z/ p)additively generated by the B, 's.
Split A into submodules A, ,n=0,1,2,... , where A, is additively generated by
B,, B,y - B,1, and where A is additively generated by B, B,.1: -+ Bop,ps fOr n>0.
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Then Az@A] ,and B.(A,)cu-A, + D, where D is the submodule of K,(BU;Z/ p)

additively generated by all the decomposable elements.
Let B, denote the composite map

AN K (BUZ/ p)—=s A
where nt, : K,(BU;Z/ p) — A, is the projection map. Notice that the eigenvalues of B,
are O,u, 2u,...,(p—1u, for n>0, and u, 2u,...,(p—-2u for n=0.
The eigenvector corresponding to the eigenvalue 0 for B, where n >0, is easily

seen to he
np+p-1 )
Ya=CD" D (DB,
i=np

It is also possible to find eigenvectors corresponding to the other eigenvalues: Let

np+p-1 np+p-1
v= > af;beavectorin A .Then B.(vV)=0-B, + > i(a +a_)pB;.Ifvisan
i=np i=np+1
eigenvector with eigenvalue ux, x = 0, then we have the equations:
O = Xanp a‘np + anp+1 = Xanp+1 2(anp+l + a‘np+2) = Xanp+2 etc

These equations can be solved inductively. We have that a, =0 for i =0,1,...,.x -1,
a, =1, and for i > x we have the recurrence relation
a =ia_ -(x—i)*
Now, by taking the limit over the B.'s, we get the result.
QED

For later use we introduce the following

Definition 2.4
Define for integers n>0 and s >0 the elements v, of K,(CP”) as follows:
© _
Yn - Bn

@ _
Yo =7Yn and
pn+p-1

=Y (D

j=pn
Proposition 2.5
@© (), =7,
@ (1 )-(0,") =B,
(3) (Hpt)*(Yn(S)) =0 forn>1,t>n+s+1.

Proof:
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The first equation is shown by induction in s; the main point is that p .(y,) =B,

The second equation follows immediately from the first.
In order to show (3), we observe that the B, -term in y,© having the most p-divisible

index i is Bnps . This term survives at most s +1+1log, (n) <s+n+1attacks by p ..
QED

Let q be a prime power. Then there is a cofiber sequence of spectra
(2.6) K(F,)——>K<00>—L15K<20>

The map v:K(F,) - K < 0,00 > is a 'Brauer lift' map as described in e.g. [FP], 166 ff.

Proposition 2.7
Let | =1P~"" for i >0 and I, =1. Then, with the notation from (2.2),

(1) v Ko (K(EF );Z1 p) > Ky(K;Z/ p) is a monomorphism, whose image is generated
by the set {i.(B,), ..., L.(B N )} and

(2) K (K(F,);Z/p)=0.

Proof:
Write, for the sake of simplicity, g instead of I,. We start by calculating the action of

the map y*-1:2"BU — £”BU in K-homology, where ~“BU is the suspension
spectrum of the space BU. As the map i. of (2.2) annihilates decomposable elements, it
suffices to calculate y® —1 on the B,'s.

Write (y® —1)B, = > a B, . Then we have
i=1

a,; =<(y'-1B,.&' >=<B,. (v -1&' >=<B,,9,(&)>=
the n'th coefficient in g; (&)
where g;(€) is the polynomial given by
0,8)=(v* ~D(E) = (' ~Y(H -1’ =(H* -1 ~(H -1’ = (€ +1* -1’ ~&
g,(x) is of degree jg, while the degree of the 'lowest' occuring term is p'+j-1.
This is seen as follows:
gq=1(mod p'), so write q=bp' +1. As | + p°Z generates (Z/ p*Z)*, (b,p) =1.
We now have that
(X+D)% = (X +D)(Xx+D™ = (x+D(x” +1)° =1+ x+bx" + higher terms
Thus _
9;(x) = ((x+1)° =1)’ —=x) = (x+bx" + higer terms)’ — x’ =
jbx® 1! + higher terms
This shows that
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(w*-1)(B,) =0 for n<p'-1
while
(W' -1@B,)=(+1- p‘)bﬁmkpi + higher terms'
It is seen that each of the blocks A, of (2.2) projects to a (p —1) -dimensional
subspace of the block A ., for for n> p™*.

Consider now the commutative diagram

K,(BU;Z/p) —1» K, (BU;Z/p)
i Vi,
0 Ky(K(F,);Z/p) > Ky (K;Z/ p) LN Ko(KiZIp) — K (K(F,);Z/p)—0

AS {i.(B;)}jcn iy 1S @ basis for K (K;Z/ p) = K, (BU;Z/ p)/Ker(i.) , we see that
y“ —1 is injective on the blocks i.(A ) with n> p'™. This gives the statement about
Ko (K(F,):Z1 p).

Furthermore, y* —1: K, (K;Z/ p) = K,(K;Z/ p) is surjective: Let

x= Y a-i(B,) <K, (K:Z/p)
n:)l:

(n,p)=1

We show inductively in N that x e Im(y® —1) . As x — (y° —1)(b‘1N‘1an[3N+pi ) isof

lower degree than x, we get the inductive conclusion, proving the statement about
Ki(K(F,);Z/ p)

3. The K-localization of X”CP* and of Q(CP~,)

In this section we calculate the K-localizations of the suspension spectrum of the
space CP” and of the corresponding infinite loop space Q(CP*). We work at an fixed,
odd prime p.

Definition 3.1
Define the polynomials {f,(x))},.x in Z[x] inductively by

1) f,(x)=1,
(2) f,(x)=x"-1,and
(3) f,.(0) = f,(x*)— p"f,(x) for n>1.
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Proposition 3.2
(1) f.(x) isapolynomial of degree p" and leading coefficient 1. Only monomials of

degree divisible by p occurs in f_ (X).
(2) For j=0,1,2,..,n we have that f ' (1)=0.
() (x-1)" divides f,(x).
(4) If yP:Z[x]— Z[X] is the operation defined by

v (9(x)) =g(x")
then

fa() =P =p")e(y®—p" ooy’ —p)o(y’ -1)(f,(x)

Proof:
Note that (1) and (4) are obvious from the definitions, and (3) follows directly from

2).

In order to show (2), we differentiate the relation (3.1.3) j times. Inductively, we get
_ o _ i-1 _
fn+l(J)(X) = pJXJ(p_l) fn“) (Xp) + Zsk (X) fn(k)(xp) - pn fn(J)(X)
k=1

where the s, (x)'s are polynomials.

For j<n the statement that f V(1) =0 follows from the corresponding statement
about f (x).For j=n we see that only two parts of f (1) doesn't vanish: From
f (x?) we getapart p"x"®f ™M(xP), and from —p"f (x) we get —p"f " (x). But

these cancel for x=1.
QED

Definition 3.3
Define, for m,n >0, the map
¥ ™:CP" - BU
as the composite
CP"——Cp” =M 5By,
where f_(H):CP” — BU classifies the virtual bundle f (H).

Proposition 3.4
For m>n+1 the map ¥ _ is null homotopic.

Proof:
¥, ™ e[CP",BU]=K°(CP") corresponds to the bundle f_(H) over CP". From

(3.1.3) we have that f (H)=(H -1)"g, (H)=£"g,(H),andas & =0 in K°(CP"),
Ke(CP"), ¥, ™ is the null map.
QED
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Definition 3.5
Define the map ¥, : 2”CP" — K as the composite
2 CP" =% 3 BU 15K
Define the map @, :2"CP" — [ [ K as the composite
i=0
m - (M m
2°CP" -] [ECP"—=——] K
i=0 i=0
where A is the diagonal map.

Let A be an Abelian group. S°A denotes the Moore-spectrum with
m,(S°A)=0, i<0, H°(S°A)=A and H'(S°A)=0 for j=0.
If X is a spectrum, then we denote X A S°A by XA or by X[A].

Definition 3.6
Let, for m>1, R :J[K — ][ KQ be the map given by

i=0 j=1
Ry (X911 %) = (D% = D(y" ~1)%,, DX, = D(y" = p)X,,.... DX, = D(y" — p" )%, ,)
Here, the short exact sequence Z — Q — Q/Z induces a cofiber sequence
Y1 KQ/Z)——> K —L5KQ
and gy’ :K — KQ is the stable Adams' operation, [A74], p.99.

Proposition 3.7
The homotopy fibre of R, Fib(R,), is equivalent to the spectrum

F =K xﬁZ‘l(KQlZ)

Proof:

Themap S, :F, - [[K isgiven by

i=0

St (X1 X500 %) = (%, () + 01(%9), C(%;) + (% )+, C (X)) + 65, (%)

n-1
with ¢, = H(\p” - p"). Itiseasily seenthat R, oS, isnull homotopic, and we get a lift

r=0
of S, to S, :F, — Fib(R,). We want to show that S is a homotopy equivalence.

The cofiber sequence = (KQ/Z) — K — KQ shows that

/Z , jodd
nj(ZlKQ/Z):{Q .J 0
0 ,jeven

and

10
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Z , j even

7 (Fn) :{(@/Z)m . j odd

The cofiber sequence
Fib(F,) eﬁKi)ﬁ KQ
gives the exact sequerll(::(:a -
0 — m,, (Fib(R,)) » 2™ —ak Q" - 1, ,(Fib(R,)) = 0
As vy, 1 Z=mn, (K)—> =, (KQ)=Q is multiplication with p"/p" =1, we see that
(R,).:Z™* — Q™ is given by
(Ri)- (X %) = (%0, X + (P =Xy, Xy + (P = D)%, 4)

Hence
, jeven

(Fib(R,)) =
TCJ( ( m)) {(Q/Z)m ,ded
Consider now the diagram

F, — ﬁK — ﬁKQ
i=0 i=1

5 4 \sm umJ« _i«vm

m

Fib(R,) —— ﬁK L TN ﬁKQ

i=0 i=1
Herethemaps T, P, U and V_ are described as follows:

T (Xos Xpseees X ) = (%5, C (%), .., C(X,,))

P (%01 X500 %) = (B (%), D(Xy,)

U, (X Xy X ) = (%9, %+ 01(X0), X, + 65 (Xg)-s Xy + 6, (X))

Vi (X X)) = (= (W7 = D)%, % = (7 = D)Xy X = (W = P %)

It is easily seenthat S, =U_ T  andthatV_ P, =R, U, and thus the diagram

is commutative.
As U and V_ induce isomorphisms in homotopy, a 5-lemma argument shows that

m?

the lift S_ of S_is a homotopy equivalence.

QED
Proposition 3.8
K.(F;Q) = K.(K;Q) and K.(F,;Z/ p) = @K*(K;Zl D).
Proof:
This is evident, as K.(Z'KQ/Z;Q) =0 and K.(KQ;Z/p)=0.
QED

11
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Proposition 3.9

The composite R o ® ™ :Z”CP" — [ [ KQ is null-homotopic.

=1

Proof:
This follows from the definitions and from (3.1.3).
QED

Definition 3.10

0 o0

Define the map R \_/0 K— \_/0 KQ as the direct limit of the maps

R, :J[K—[[KQ (It follows from (3.6) that the R, 's are compatible for varying m).

i=0 j=1
From (3.5) we see that the composite

m+1

> Cp" 2 ﬁ K—>]]K
i=0 i=0

where the map i is the inclusion of the first (m+1) 'st factors, equals

m+1
P, E°CP" > [[K
i=0

We thus get a map @™ :Z”CP" — VK.
Again, (3.5) and (3.4) shows that the composite

(D(ml)

>*CP" i yy=Cpt VK

0

equals @™ :Z”CP" — VK, where j:CP" — CP"*" is the inclusion. By taking the limit

over n, we obtain a map

O Z"CP” > \/0 K
From (3.9) we conclude that R o ® is null-homotopic, and we get a lift
®:x”°CP” —» F, where F=limF_ =K v %2*1KQ/Z denotes the homotopy fibre of
the map R.

Theorem 3.11
@ induces an isomorphism in K.(—;Z/ p) -theory:

D, : K. (Z"CP”;ZI p)——K.(F;ZI p)
Proof:

As K, (- Z/ p) of both spectra vanishes, Bott periodicity shows that it suffices to
consider the induced map ®@. in K,(—;Z/ p)-theory.

12
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We calculate the action of the n'th factor map ¥, : Z"CP* — K . We have that
¥, (€)=Y, (H-D=¥,(H)-¥, O=f,H)-fQ="fH)
As p=0(mod p), (3.1.3) shows that f,_,(x) = f (x")= xP"" —1(mod p). Thus
¥, (€)= fu(H)=H” 1= (H -1 =x" = (1))
From this we conclude that
(¥,)=io ().
with Mo from (1.6).

N
Now we show that ®@. is injective. Assume that x = Zanﬁn is contained in Ker®..
n=1

N
Then W,.(x) =i.(x)=0,50 x=Y a,% -y

n=1

@ with N,<N/p.

n

N,
Next, W..(x)=i.op . (x)=0,andso x= D a, Py, @ with N, <N,/ p<N/p>
i=1

Repeating this argument, the injectivity follows.
In order to show that ®. is surjective, let (y,,Y,,...,¥y,0,0,...) be an element of

K,(F;Z/p)= @0 K, (K;Z/ p) . Inductively we construct a sequence X,,X,,... of elements

of K,(Z*CP*;Z/ p) such that ®.(x)=(Yy Y- Vi1, :,0,0,...) . As y, =0 for j>N ,
this process terminates after a finite number of steps, and we conclude that @, is

surjective.
First, i. = y,. is surjective, so there exists x,” e K,(Z"CP~;Z/ p) with
N
Yo (%) =y, . Write X, =>"a,B,
i=0
We adjust x,” with elements from Ker ¥, = span({y,®}) . Let x,® = x,© +v,
where v e Ker ¥, satisfies the condition that V. (v) = —¥.(x,'?) - this is possible, as

Po=iop,.| is surjective. Furthermore, as x, is of 'degree' N in the B,'s, v is

span{y, "}
of 'degree’ at most N/ p in the y,®'s.

Inductively, we kill off the elements ¥, (x,""™) with linear combinations of the
y,™"s. Each adjustment is of 'degree' at most N/ p™, and so this process terminates after
a finite number of steps. Thus, x, is defined to be x,™ for m>log (N).

Similarly, we can construct x;,X,,... , and we conclude that ®. is surjective.
QED

Corollary 3.12
The map @ :2*CP” — F isa K.(—Z,)-equivalence.
Proof:

13
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By using the Bockstein sequences in K-homology associated to the coefficient
sequences

0>Z/Ip" ' >ZI/p"—>Z/p—>0
we inductively see that @ isa K.(—;Z/ p") -equivalence. By taking the limit, we obtain

the result.
QED

We now turn to the rational type of X*CP~. In [S72], it is shown that the map
1:Q(CP”) —» BU xZ (which Segal denotes by T), splits Q(CP*) as (BU xZ)xC ,

where the space C has finite homotopy groups. Translating this into a statement about
spectra, we have

Proposition 3.13
The map i:Z”CP” — K < 0,00 >=hu is a rational equivalence.

Definition 3.14

-1 .
Define r: K — [ ]=*S°Q as follows: It is well known, that

I=—00

KQ = ﬁZZiSOQ

I=—00

-1

We let r be the composite K ——KQ—"— [ [ £*s°Q, where we use the map D

I=—00

of (3.6), and where 7 is the projection onto the factors £#S°Q with i <-1.

Let bu denote the homotopy fibre of r, and note that the natural map bu — K ,
factors through bu , as =, (bu) = 0 for i <0.

Proposition 3.15
The K-localization of bu is bu.

Proof:

_ 1
bu is obviously K-local, as both K and [ [£*S°Q are K-local. (Every rational

I=—00

spectrum is K-local, as it follows from the remark prcceding thm. (2.2) in [Mi]).
We have to show that the map f :bu — bu is a K-equivalence. Let W denote the
homotopy fibre of f. We need to show that K,.(W) =0.
Let W, denote the n-connected cover of W. We have the sequence of maps
0=W, >W, >W, >W, > ..

14
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and W = limW_, . As K.(W) = limK.(W._,), it suffices to show that K.(\W_,)=0.

This is done inductively: For n <0, W_ is the zero spectrum. We obtain W_, from
via the cofiber sequence

W, .,—»>W, > H(t ,(W)-n)
where H(m_,(W);—n) is the Eilenberg-MacLane spectrum with the sole non-zero
homotopy group

n_,(H(n_,(W);—n))==n_,(W)

n_, (W) is either zero or Q/Z, depending on whether n is even or odd. In both cases,
n_, (W) is a torsion group, and K.(H(r_,(W);—n)) =0, as it follows from [AH], thm. I.
Inductively we see that K.(\W_,)=0.

W

-n+1

QED

Definition 3.16
Let F be the homotopy fibre of the map

-1
_ -1 2ic0
F—Kvi\:/lZ KQ/Z—)JIZ S'Q

I=—00

which is the map r of (3.14) on the first component, and zero on all the other components.
We have immediately that

0

ﬁ:Evylle@/Z

Theorem 3.17

o0

The KZ,,, -localization of £*CP” is the spectrum Ifzﬁv\gZ’lKQ/Z

Proof:
This follows immediately from the rational statements (3.13) and (3.15), and from

(3.12). Observe that the constituents of F are all K-local spectra.
QED

We wish to calculate the K-localization of the infinite loop space Q(CP*). We use

Proposition 3.18 ([B82], (3.1))
Let X be a connective spectrum. Then there are natural isomorphisms

T (L Q" X) =z m (LX) , i>2
T (L Q*X)=zm,(X) , i<2
and a natural short sequence:
0 — tors(m, (L X)) = m, (L, Q" X) - m,(X)/tors(n, (X)) = 0.
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Theorem 3.19

The KZ, ,-localization of the space Q(CP”) is

(p)

BU xZx [ [QBU[Q/Z] < 2,0 >

i=1
where QBU[Q/Z] is the zero'th space in the Q -spectrum X 'KQ/Z.
Proof:
Making £*CP” into an Q -spectrum and taking the corresponding infinite loop

space map, we get Q”® : Q(CP*) —» BU x Z x HQBU [Q/Z], and as the latter space is

i=1

K-local, we getamap L, Q"®:L,Q(CP”) —» BU xZx [ [QBU[Q/Z].
i=1
(3.18) shows that this map is a homotopy equivalence in all dimensions except
possibly 1 and 2.

We have that =, (£°CP”) = Z, and that

7, (L Z“CP*) = r, (bu) ® @nz(z-lK@/Z) ~7® @0 ~7

(3.18) shows that =, (L,Q(CP”)) = Z, and we conclude that L, Q*® gives an

equivalence in homotopy in dimension 2.
By killing off the rt,'s of QBU[Q/Z] (r,(QBU[Q/Z]) = Q/Z), we get the result.

QED

4. The K-localization of X*BG and Q(BG,)

We now calculate the K-localization of the suspension spectrum of the space BG
and of the corresponding infinite loop space Q(BG,), where G =Z/ p" is a cyclic p-
group. pis all odd prime. As in §2 we select a prime |, such that | + p°Z generates the
unit group (Z/ p*Z)*.

We start, by studying the spectrum K(IF,[G]) — algebraic K-theory of the group ring
IF,[G]. This spectrum is defined by using an infinite loop space machine, e.g. [S74], on
the category GL(IF,[G]) of all projective F,[G]-modules and F,[G]-isomorphisms; the
group-law is the direct sum. This construction insures that m,(K(I,[G])) is isomorphic to
Rg (G) — the Grothendieck group of projective F,[G]-modules.

Proposition 4.1

The spectrum K (F[G]) splitsas [ [ K(F,), where g =|G|=p", I, =1, and
i=0

i i-1 .
L =1 —I” fori>0.
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Proof:
The group ring F,[G] is semi-simple, as (I, p) =1, and
RIGl=F, xF x..xF
Indeed, the factor group Z/ p' of G has an irreducible representation over I of
dimension p'— p'™, as the finite field F, hasa p''th root of unity. This representation

induces an irreducible representation V of G of the same dimension, giving the factor
Homg (V.V)=F

QED
Corollary 4.2
K,(K(F[G]);Z/ p) isafree Z/ p-module on p" generators.
K, (K(F[G])Z/ p)=0.
Proof:
This follows immediately from (4.1) and (2.7).
QED

Definition 4.3
Let G be a finite group. Define 7 to be the topological category, whose objects are

the G-sets of the form n(G/1), n >0, and whose morphisms are G-bijections. The

topologies on the object set and on each morphism set are thle discrete topologies. We
equip 7 with the composition [] - disjoint union of sets.

The group completion QB(B7;) is an infinite loop space, cf. [S74], and in fact

Lemma4.4

The infinite loop space QB(B7;) corresponding to 7 is Q(BG,).
Proof:

We have immediately that Hom,. (n(G/1),n(G/1)) =X, |G as atopological group.
Thus, QB(BZ) = QB(] [B(Z,/G).

n=0

We have the 'Dyer-Lashof-equivalence' (cf. [MM], p.49):
Q(X) = B(([IEZ, x;, X"/ =),

n=0

where X actson X" by permuting the coordinates. The equivalence relation ~
identifies points of EX,, x; X" with the subspace F, of EX, x, X" given by
Fo={(e%, %, %) € EZ xg X" [3)1x; =}
Here * is the basepoint of X.
Since EX, x; (BG,)"=EZ, x, (BG)"LIF,,and EZ, x, (BG)"=B(Z,/G), we get

the result.
QED
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The functor 7, — GL(F,[G]) which sends the G-set n(G/1) to its permutation
representation F,[G]" is a map of permutative categories, so we get an infinite loop map
e:Q(BG,) —» K(I[G]) . We also denote by e the associated morphism between spectra

(45)  e:3°(BG,)— K(F[G])e : W(BG,) K(IFt[GI).
We furthermore use the splitting of spectra

(4.6) *(BG,)=2"BG v S°,

where S° is the sphere spectrum, to define the map

(4.7) £:X"BG — K(F[G]),

as the composite 2*"BG——2”"(BG, ) ——K(F[C]).

Theorem 4.8
€:2”BG — K(F[G]) gives an equivalence in K.(—Z/ p) -theory.
Proof:
From (1.8) and (4.2) we know that K.(X"BG;Z/ p) and K.(K(F[G]);Z/ p) are

abstractly isomorphic. We construct a commutative diagram

*BG ——  K(F[G])
(4.9) 3578y da
T*CP” —2» L, (Z°CP%)

and show that the images if ® - X*By and of Ain K.(L, (Z*CP”);Z/ p) are the same.
As furthermore @ o ~”By and A give monomorphisms in K.(—;Z/ p) -theory, we
conclude that € isa K.(—;Z/ p) -equivalence.

>*By comes from the map y :G — S* of (1.8), while @ is defined in (3.10). A is
the product of maps A, : K(IFIJ_) — K, where we observe the splittings (3.10) and (4.1).

(As we work with Z/ p -coefficients, it doesn't matter whether we use K or T 'KQ/Z, as
KAS°ZIp=3"KQIZASZI p). A isthe ‘Brauer lift' map of (2.6), and A; goes into

the n— j'th component of L, (2"CP”) = \/0 K.

To show that (4.9) commutes, it suffices to show the commutativity of

2°BG OK(EGD>  K(F)
(4.10) g ba,

il-lnfj

s*CP*  — 25 L (S°CP%)
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We thus have two elements i JUR oX”By and A;onog of [Z"BG,K]. = K" (BG).
According to the Atiyah completion theorem, [A61], (7.2), K*(BG) = R(G), . Both

ioupn,,. oX”By and A, omo& corresponds to elements in R(G): y - the standard

character of G sending 1+ p"Z to exp(2wi/ p") — gives, after raising it to the p"'th
power, the character sending 1+ p"Z to exp(2xi/ p'). And the Brauer lift of the
irreducible representation of G into F, is easily seen to be the same character. We thus
have established the commutativity of (4.9).

Now, the images of io H oo oX"By and of A, in K.(—;Z/ p) -theory are clearly the

same, namely i.(< BosBrraB oy >).

QED
We are now able to calculate L, (£*BG):

Definition 4.11
Let q be a prime power. Let 7, be the fibre of y*-1:K — K. Let a:K(F,) - J,

be the map obtained from the diagram
KEF,) —> K<0ow> —¥Is K<2mw>

ad \ s

J, — K > K

Proposition 4.12
a:K(F,) » J, isa K.(-Z/ p) -equivalence.
Proof:
The proof is analogous to that of (3.15), the main point being that
K.(H(n_,(F);-);Z/ p)=K.(H(n_,(F)®, Z/ p;—n)) =0
where F denotes the homotopy fibre of the map a: K(IF,) - J,,.

QED

Proposition 4.13
Let q be a prime power. Let, as in [B79], p.269, jq be the homotopy fibre of the

map k:J, - H(Q,-1) =>"'MQ, inducing the map Z — Q in =_,(-) (recall that the
Hurewicz map H :H ,(— Q) - n_,(— Q) is an isomorphism, as it follows from Serre
theory). Then the K-localization of K(F,) is jq.

Proof:
As n_,(K(IF,)) =0, we get a lift of the map a of (4.10) to a: K(F,) —» jq .(4.11)

implies that a isa K.(—;Z/ p) -equivalence.
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The only non-zero K.(-;Q)-homology groups of both K(F,) and jq reside in

dimension zero and are isomorphic to Q. The map a is seen to be a K.(—;Q) -

equivalence, and the result follows.
QED

Definition 4.14

Define K(F,[G]) as the K-local spectrum Hjli . Define the K-local spectrum
i=0

SKC(F[G])[Q/Z] as the homotopy fibre of the rationalization map
K(F[G]) - LEFIGC)Q

As a corollary to (4.12) we have

Corollary 4.15
The map A:ﬁa: K(]F,[G]):fIK(IF‘,i)—)ll[jIi =K(F[G]) isa K.(—Z/ p) -

equivalence.

Theorem 4.16
The K-localization of =BG is 'K (F,[G])[Q/Z]

Proof:
The composite

2”BG——K(F[G])) ——> K(F[G])
factors through e': =”BG — = 'K (F,[G])[Q/ Z], as the homotopy groups of =”BG are
finite.
It follows from (4.8) and (4.15) thate' is a K.(—;Z/ p) -equivalence, and as both

>*BG and XK(F,[G])[Q/Z] vanish rationally, the theorem follows.
QED

By using the splitting (4.6) and the fact that L, S° = 7,, [H79], p.269, we get

Corollary 4.17

L (2"BG,) =7, v X K(E[G)(Q/Z) = J, v V277, [Q/Z]

And from (3.18) we finally get:
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Theorem 4.18
(1) The K-localization of the space Q(BG) is XK (F,[G])(Q/Z) - the zero'th space of

the Q -Spectrum X KC(F [G])[Q/Z].
(2) The K-localization of the space Q(BG,) is K(I,) x QK(F[G])(Q/Z) .
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