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 In this paper the K-theoritical localizations of the suspension spectra for the spaces 
P∞C  and / nB pZ , where p is an odd prime, are calculated. The result in the case af P∞C  

is already known; it is to be found in [R], (9.2). The methods used here are completely 
new, although. 
 This paper is split into four parts; the first two which contains specific calculations 
of K-homology groups. In section 1 K-theory of P∞C  and / nB pZ  is described, while 
section 2 calculates K-homology of the spectra K and ( )lK F . These last calculations rely 
heavily on the result of Adams, [A74], p. 100, describing the behaviour of the Bott-map 
in K-theory. 
 In section 3 the K-localizations of P∞ ∞Σ C  and of the corresponding infinite loop 
space ( )Q P∞C  are calculated, and finally in section 4 we relate the K-localization of 

/ nB p∞Σ Z  to algebraic K-theory of the group ring [ / ]n
l pF Z . 

 Throughout the paper we work within the category of spectra as described in [A74]. 
Especially, we use the following notation: 
 If X is a spectrum and n an integer, we denote the n-connected cover of X by 

,X n< ∞ > . 
 K is the periodic spectrum representing complex K-theory, and we define K-
homology of the spectrum X to be * *( ) ( )K X K X= π ∧ . 
 If X is a topological space, then we denote by X∞Σ  the suspension spectrum of X. 

X∞Σ  is defined to have the n-th space ( ) n
nX X∞Σ = Σ  for 0n ≥ , and if n is negative, 

then ( )nX∞Σ  is the trivial space. 
 I would like to thank Marcel Bökstedt for suggesting the present line of proof and 
for much help in carrying out. I would also like to thank my advisor Ib Madsen for help 
with the project, in particular in connection with §3 below. 
 
 
1. K-theory of  P∞C  and / nB pZ   
 
 In this section we study the K-theory of the spaces  1P BS∞ =C  and / nB pZ  , where 
p is a fixed, odd prime. 
 
 
Proposition 1.1 ([A62], (7.2)) 
 Let 0n > be an integer. Then 
  0 1( ) [ ]/( )n nK P +≅ ξ ξC Z    and    1( ) 0nK P =C , 
where 1Hξ = − is the reduced Hopf bundle. 
 
 
 By applying the universal coefficient sequence 

(1.2) * 1 *
*0 Ext ( ( ), / ) ( ; / ) Hom ( ( ), / ) 0K X p K X p K X p−→ → → →Z ZZ Z Z    

of [Y], p.312 and 320, we obtain 
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Proposition 1.3 
(1) 0 ( ; / )nK P pC Z  is a free / pZ -module generated by 0 1, , ..., nβ β β , where iβ  is the 
 dual of iξ  under the isomorphism 0

0 ( ; / ) Hom ( ( ), / )n nK P p K P p≅C CZZ Z , i.e. 
(1.4) ,i

j ij< ξ β > = δ  

(2) 1( ; / ) 0nK P p =C Z  
 
 
 By taking the limit we get 
 
 
Corollary 1.5 
(1) 0 ( ; / )K P p∞C Z  is a free / pZ -module with the countable basis 0 1{ , ,...}β β . 
(2) 1( ; / ) 0K P p∞ =C Z . 
 
 
 Let m∈N . Consider the map 1 1: : exp(2 ) exp(2 )m S S ix imxμ → π π . Define 

:m P P∞ ∞μ →C C  as mBμ , where we recall that 1P BS∞ =C . 
 
 
Proposition 1.6 
 mμ  restrists to a map n nP P→C C . The effect of sp

μ  in K-homology with 

coefficients in / pZ  is as follows: * /
( ) ( )s sip i p
μ β = β  if sp divides i, and is zero otherwise. 

 
Proof: 
 The composite mnP P Pμ∞ ∞→ ⎯⎯→C C C  homotopic to a cellular map. As the 2n-
skeleton of P∞C  is nPC , the image ( )n

m Pμ C  is contained in nPC , giving the map 
: n n

m P Pμ →C C . 
 Letting H be the Hopf-bundle, we see that *( ) m

m H Hμ = . By using the binomial 
theorem, we get 
  * *( ) ( ) ( ) ( 1) 1 ( 1) (mod )

s s s

s s
p p p

p p
H H H pμ ξ = μ − = − ≡ − = ξ  

The duality between the iξ 's and the jβ 's gives 

  *
*,( ) ( ) , ,

s

s s
r r rp

m m mp p
< ξ μ β > = < μ ξ β > = < ξ β >  

which is non-zero if and only if sm rp= . 
QED 

 
 
 We now turn to the case of / nB pZ . For the sake of clarity we let G denote / npZ , 
and we let g be the order of G, ng p= . 
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 Recall that we have the G-action on 2 1nS +  given as follows: 2 1nS +  is the unit sphere 
in 1n+C . The element a g+ Z  of G acts on 1

0 1( , ,..., ) n
nz z z +∈C  by 

  0 1 0 1( )( , ,..., ) ( , ,..., )a a a
n na g z z z z z z+ = η η ηZ  

where exp(2 / )i gη = π . This G-action restrists to 2 1nS + , and the corresponding orbit 
space is the lens space denoted by ( )nL g . 
 The inclusions 2 1 2 3n nS S+ +→  gives inclusions 1( ) ( )n nL g L g+→ , and it is readily 
seen that the space lim ( )nL g

→
is homotopy equivalent to BG . 

 Furthermore, the standard map 1: : aG S a gχ → + ηZ  gives rise to maps 
: ( )n nB L g Pχ →C  and :B BG P∞χ →C . 

 Let iβ  be the dual to *( ) ( 1)i iB Hξ = ξ − ; i.e. we have the relation 

(1.7) ,i
j ij< ξ β > = δ . 

 
 
Proposition 1.8 
 Let  0 1 1, ,... g −< β β β >  denote the / pZ -module freely generated by 0 1 1, ,..., g−ββ β . 
Then 
(i)  0 0 1 1( ; / ) , ,..., gK BG p −=< β β β >Z   and 
(ii)  1( ; / ) 0K BG p =Z . 
 
Proof: 
 This proof is, as that of (1.3), essentially an application of the universal coefficient 
sequence, (1.2):  0 ( ( ))nK L g  is shown in [Ch], thm. 3, to be 
  0 1( ( )) [ ]/((1 ) 1, )n g nK L g +≅ ξ + ξ − ξZ  
For n g>  we have that 0 ( ( ))nK L g  is a free Z -module on the generators 0 1 1, , ..., g−ξ ξ ξ . 
By using (1.2) and by taking the limit, we obtain 0 ( ; / )K BG pZ . 
 An argument using the Atiyah-Hirzebruch spectral sequence shows that 

1( ( ))nK L g ≅ Z , and that this Z  originates in the top cohomology 2 1( ( ))n nH L g+ ≅ Z , 
which is the only non-zero odd-dimensional cohomology of ( )nL g . But the restriction 
map 1 1 1( ( )) ( ( ))n nK L g K L g+ →  is zero, and we see that 1( ; / )K BG pZ  vanishes. 

QED 
 
 
2. K-theory of topological and algebraic K-theory 
 
 In this section we continue our calculations. We calculate the K-homology with 
coefficients in / pZ  of the spectra K and ( )

il
K F , where K is the (periodic) spectrum 

representing complex K-theory, and where the spectrum ( )
il

K F  is algebraic K theory of 

the finite field with il  elements, 
il

F ; il  is assumed to be of the form 
1i ip p

il l
−−=  for 0i >  
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and 0l l= . l  is here an odd prime, such that 2l p+ Z  generates the unit group 2( / )p ×Z  – 
such primes exist according to a theorem of Dirichlet, cf. [Ap], (7.9). 
 This last calculation is to be used in §4  – we want to calculate *( ( [ ]; / )lK K G pF Z , 
where G is a cyclic p-group; / nG p= Z , and we have the splitting of (4.1): 

  
0

( [ ]) ( )
i

n

l l
i

K G K
=

=∏F F  

 
 We recall from [A74], p.204, that the spectrum K has the spaces 2nK BU=  and 

2 1nK U+ = . The map 2 2
2 2 2: n nB K BU BU K +Σ = Σ → =  is the adjoint of the Bott 

isomorphism 2BU BU× →ΩZ . 
 Denote by iβ  also the image of 0 0( (1); / ) ( ; / )i K BU p K P p∞β ∈ = CZ Z  under the 
map : (1)Hi BU BU→  given by the Hopf-bundle. Then we have from [A74], p.47: 
 
 
Proposition 2.1 
(i) 0 1 2( ; / ) / [ , , ...]K BU p p≅ β βZ Z   
(ii) 1( ; / ) 0K BU p =Z . 
 
 
Theorem 2.2 
 The map * 0 0: ( ; / ) ( ; / )i K BU p K BU p→Z Z  is surjective. The kernel of *i  is 
additively generated by all elements decomposable in the iβ 's and by the family 0{ }n n>γ , 

where 
1

( 1) ( 1)
np p

n i
n i

i np

+ −

=

γ = − − β∑ . 

Proof: 
 Write X for the suspension spectrum of the space BU. The periodicity map B induces 
a spectrum map 2:B X X−→ Σ , and K is the direct limit spectrum of the system 
  2 4 ...B B BX X X− −⎯⎯→Σ ⎯⎯→Σ ⎯⎯→  
Thus, 0 ( ; / )K K pZ  is the direct limit of 

  * *
0 2( ; / ) ( ; / ) ...B BK BU p K BU p⎯⎯→ ⎯⎯→Z Z  

 The map *B  is described in [A74], p. 100: *B  annihilates elements decomposable in 

iβ 's, and 
(2.3) * 1( ) ( ( 1) ) decomposables, 0i j jB u j j j+β = β + + β + >  
where 2 ( )u K= π is the generator (Bott element), cf. [A74], p.38. 
 Clearly *i  maps all decomposables to zero, and so we need only study *B  on the 
subspace A of 0 ( ; / )K BU pZ additively generated by the iβ 's. 
 Split A into submodules , 0,1,2,...nA n =  , where 0A  is additively generated by 

1 2 1, , ... p−β β β , and where nA  is additively generated by 1 1, , ...np np np p+ + −β β β  for 0n > . 
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Then  
0 nn

A A
∞

=
=⊕  , and *( )n nB A u A D⊆ ⋅ + , where D is the submodule of 0 ( ; / )K BU pZ  

additively generated by all the decomposable elements. 
 Let nB denote the composite map  

  
* |

0 ( ; / ) n
B An

n nA K BU p Aπ⎯⎯⎯→ ⎯⎯→Z   
where 0: ( ; / )n nK BU p Aπ →Z  is the projection map. Notice that the eigenvalues of nB  
are 0, , 2 , ..., ( 1)u u p u− , for 0n > ,  and , 2 , ..., ( 1)u u p u−  for 0n = . 
 The eigenvector corresponding to the eigenvalue 0 for nB , where 0n > , is easily 
seen to be 

  
1

( 1) ( 1)
np p

n i
n i

i np

+ −

=

γ = − − β∑  

 It is also possible to find eigenvectors corresponding to the other eigenvalues: Let 
1np p

i i
i np

v a
+ −

=

= β∑ be a vector in nA . Then 
1

* 1
1

( ) 0 ( )
np p

np i i i
i np

B v i a a
+ −

−
= +

= ⋅β + + β∑ . If v is an 

eigenvector with eigenvalue , 0ux x ≠ , then we have the equations: 
  0 npxa=   1 1np np npa a xa+ ++ =   1 2 22( )np np npa a xa+ + ++ =  etc 
These equations can be solved inductively. We have that 0ia =  for 0,1,..., 1i x= − ,  

1xa = , and for i x> we have the recurrence relation 
  1

1 ( )i ia ia x i −
−= ⋅ −  

 Now, by taking the limit over the *B 's, we get the result.  
QED 

 
 
 
 For later use we introduce the following 
 
 
Definition 2.4 
 Define for integers 0n >  and 0s ≥  the elements ( )s

nγ  of 0 ( )K P∞C  as follows: 
  (0)

n nγ = β  
  (1)

n nγ = γ   and 

  
1

( ) ( 1)( 1) ( 1)
pn p

s n j s
n j

j pn

+ −
−

=

γ = − − γ∑  

 
Proposition 2.5 
(1) ( ) ( 1)

*( ) ( )s s
p n n

−μ γ = γ  

(2) ( )
*( ) ( )s

s n np
μ γ = β  

(3) ( )
*( ) ( ) 0s

t np
μ γ =  for 1n ≥ , 1t n s≥ + + . 

 
Proof: 
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 The first equation is shown by induction in s; the main point is that *( )p n nμ γ = β . 
The second equation follows immediately from the first. 
 In order to show (3), we observe that the iβ -term in ( )s

nγ  having the most p-divisible 
index i is snp

β . This term survives at most 1 log ( ) 1ps n s n+ + ≤ + + attacks by *pμ . 

QED 
 
 
 Let q be a prime power. Then there is a cofiber sequence of spectra 

(2.6) 1( ) 0, 2,
q

qK K Kν ψ −⎯⎯→ < ∞ > ⎯⎯⎯→ < ∞ >F  

The map : ( ) 0,qK Kν → < ∞ >F  is a 'Brauer lift' map as described in e.g. [FP], 166 ff. 
 
 
Proposition 2.7 
 Let 

1i ip p
il l

−−=  for 0i >  and 0l l= . Then, with the notation from (2.2), 
(1)  * 0 0: ( ( ); / ) ( ; / )

il
K K p K K pν →F Z Z  is a monomorphism, whose image is generated  

 by the set * 1 * 1
{ ( ), ..., ( )}ip
i i

−
β β  , and 

(2)  1( ( ); / ) 0
il

K K p =F Z .  
 
Proof: 
 Write, for the sake of simplicity, q instead of il . We start by calculating the action of 
the map 1:q BU BU∞ ∞ψ − Σ → Σ  in K-homology, where BU∞Σ  is the suspension 
spectrum of the space BU. As the map *i  of (2.2) annihilates decomposable elements, it 
suffices to calculate 1qψ −  on the iβ 's. 

 Write 
1

( 1)q
n nj j

j
a

∞

=

ψ − β = β∑ . Then we have 

  ( 1) , ,( 1) , ( )q j q j
nj n n n ja g= < ψ − β ξ > = < β ψ − ξ > = < β ξ > =  

  the n'th coefficient in ( )jg ξ  
where ( )jg ξ  is the polynomial given by 

  ( ) ( 1)( ) ( 1)( 1) ( 1) ( 1) (( 1) 1)q j q j q j j q j j
jg H H Hξ = ψ − ξ = ψ − − = − − − = ξ + − − ξ  

 ( )jg x  is of degree jq, while the degree of the 'lowest' occuring term is 1ip j+ − . 
This is seen as follows: 
 1 (mod )iq p≡ , so write 1iq bp= + . As 2l p+ Z  generates 2( / )p ×Z Z , ( , ) 1b p = . 
We now have that 
  ( 1) ( 1)( 1) ( 1)( 1) 1 higher terms

i i iq bp p b px x x x x x bx+ = + + ≡ + + = + + +  
Thus 

  
1

( ) (( 1) 1) ( higer terms)

higher terms

i

i

q j j p j j
j

p j

g x x x x bx x

jbx + −

= + − − = + + − =

+
 

 This shows that 
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  ( 1)( ) 0q
nψ − β =   for  1in p≤ −  

while 
  

1
( 1)( ) ( 1 ) 'higher terms'i

q i
n n p

n p b
+ −

ψ − β = + − β +  

 It is seen that each of the blocks nA  of (2.2) projects to a ( 1)p − -dimensional 
subspace of the block 1in p

A −−
 for for 1in p −≥ . 

 Consider now the commutative diagram 
 

1
0 0

* *

1
0 0 0 1

( ; / ) ( ; / )

0 ( ( ); / ) ( ; / ) ( ; / ) ( ( ); / ) 0

q

q

q q

K BU p K BU p
i i

K K p K K p K K p K K p

ψ −

ψ −

⎯⎯⎯→
↓ ↓

→ → ⎯⎯⎯→ → →F F

Z Z

Z Z Z Z
 
 As * ,( , ) 1{ ( )}j j j pi ∈ =β N  is a basis for 0 0 *( ; / ) ( ; / ) / Ker( )K K p K BU p i≅Z Z , we see that 

1qψ −  is injective on the blocks *( )ni A  with 1in p −≥ . This gives the statement about 

0 ( ( ); / )qK K pF Z . 

 Furthermore, 0 01: ( ; / ) ( ; / )q K K p K K pψ − →Z Z  is surjective: Let 

  *
1

( , ) 1

( ) ( ; / )
N

n n n
n

n p

x a i K K p
=
=

= ⋅ β ∈∑ Z  

We show inductively in N that Im( 1)qx∈ ψ − . As 1 1
1

( 1)( )i
q

n N p
x b N a− −

+ −
− ψ − β  is of 

lower degree than x, we get the inductive conclusion, proving the statement about 
1( ( ); / )qK K pF Z  

 
 
3. The K-localization of P∞ ∞Σ C  and of ( )Q P∞

+C  
 
 In this section we calculate the K-localizations of the suspension spectrum of the 
space P∞C  and of the corresponding infinite loop space ( )Q P∞C . We work at an fixed, 
odd prime p. 
 
 
Definition 3.1 
 Define the polynomials { ( ))}n nf x ∈N  in [ ]xZ  inductively by 
(1) 0 ( ) 1f x = , 
(2) 1( ) 1pf x x= − , and 
(3)  1( ) ( ) ( )p n

n n nf x f x p f x+ = −  for 1n > . 
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Proposition 3.2 
(1) ( )nf x  is a polynomial of degree np  and leading coefficient 1. Only monomials of 
 degree divisible by p occurs in ( )nf x . 
(2) For 0,1,2,...,j n=  we have that ( )

1 (1) 0j
nf + = . 

(3) ( 1)nx −  divides ( )nf x . 
(4) If : [ ] [ ]p x xψ →Z Z  is the operation defined by 
  ( ( )) ( )p pg x g xψ =  
 then 
  1

1 0( ) ( ) ( ) ... ( ) ( 1)( ( ))p n p n p p
nf x p p p f x−
+ = ψ − ψ − ψ − ψ −  

 
Proof: 
 Note that (1) and (4) are obvious from the definitions, and (3) follows directly from 
(2). 
 In order to show (2), we differentiate the relation (3.1.3) j times. Inductively, we get 

  
1

( ) ( 1) ( ) ( ) ( )
1

1
( ) ( ) ( ) ( ) ( )

j
j j j p j p k p n j

n n k n n
k

f x p x f x s x f x p f x
−

−
+

=

= + −∑  

where the ( )ks x 's are polynomials. 
 For j n<  the statement that ( )

1 (1) 0j
nf + =  follows from the corresponding statement 

about ( )nf x . For j n=  we see that only two parts of ( )
1 (1)n

nf +  doesn't vanish: From 
( )p

nf x  we get a part ( 1) ( ) ( )n n p n p
np x f x− , and from  ( )n

np f x−  we get  ( ) ( )n n
np f x− . But 

these cancel for 1x = . 
QED 

 
 
Definition 3.3 
 Define, for , 0m n > , the map 
  ( ) :n n

m P BUΨ →C  
as the composite 
  ( )mf HnP P BU∞⎯⎯→ ⎯⎯⎯→C C , 
where ( ) :mf H P BU∞ →C  classifies the virtual bundle ( )mf H . 
 
 
Proposition 3.4 
 For 1m n≥ +  the map ( )n

mΨ  is null homotopic. 
 
Proof: 
 ( ) 0[ , ] ( )n n n

m P BU K PΨ ∈ =C C  corresponds to the bundle ( )mf H  over nPC . From 
(3.1.3) we have that ( ) ( 1) ( ) ( )m m

m m mf H H g H g H= − = ξ , and as 1 0n+ξ =  in 0 ( )nK PC , 
K°(CP"), ( )n

mΨ  is the null map. 
QED 
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Definition 3.5 
 Define the map ( ) :n n

m P K∞Ψ Σ →C  as the composite 

  
( )n

m inP BU K
∞Σ Ψ∞ ∞Σ ⎯⎯⎯⎯→Σ ⎯⎯→C  

 Define the map ( )

0

:
m

n n
m

i

P K∞

=

Φ Σ →∏C  as the composite 

  
( )

0

0 0

m
n

i
i

m m
n n

i i

P P K=

Ψ
Δ∞ ∞

= =

∏
Σ ⎯⎯→ Σ ⎯⎯⎯⎯→∏ ∏C C  

 where Δ  is the diagonal map. 
 
 
 Let A be an Abelian group. 0S A  denotes the Moore-spectrum with 
  0( ) 0i S Aπ = , 0i < , 0 0( )H S A A=  and 0( ) 0jH S A =  for 0j ≠ . 
 If X is a spectrum, then we denote 0X S A∧  by XA or by [ ]X A . 
 
 
Definition 3.6 

 Let, for 1m ≥ , 
0 1

:
m m

m
i j

R K K
= =

→∏ ∏ Q  be the map given by 

 1
0 1 0 2 1 1( ,..., ) ( ( 1) , ( ) ,..., ( ) )p p p m

m m m mR x x Dx D x Dx D p x Dx D p x−
−= − ψ − − ψ − − ψ −  

Here, the short exact sequence /→ →Q Q�Z Z  induces a cofiber sequence 
  1( / ) C DK K K−Σ ⎯⎯→ ⎯⎯→Q QZ  
and :p K Kψ → Q   is the stable Adams' operation, [A74], p.99. 
 
 
Proposition 3.7 
 The homotopy fibre of mR , ( )mFib R , is equivalent to the spectrum 

  1

1

( / )
m

m
i

F K K−

=

= × Σ∏ Q Z  

 
Proof:  

 The map 
0

:
m

m m
i

S F K
=

→∏  is given by  

  0 1 0 1 1 0 2 2 0 0( , ,..., ) ( , ( ) ( ), ( ) ( ),..., ( ) ( ))m m m mS x x x x C x x C x x C x x= + σ + σ + σ  

with 
1

0

( )
n

p r
n

r

p
−

=

σ = ψ −∏ . It is easily seen that m mR S   is null homotopic, and we get a lift 

of mS  to : ( )m m mS F Fib R→ . We want to show that mS  is a homotopy equivalence. 
 The cofiber sequence 1( / )K K K−Σ → →Q QZ  shows that 

  1 / , odd
( / )

0 , evenj

j
K

j
− ⎧

π Σ = ⎨
⎩

Q
Q

Z
Z  

 
and 
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, even

( )
( / ) , oddj m m

j
F

j
⎧

π = ⎨
⎩ Q

Z
Z

 

 
 The cofiber sequence 

  
0 1

( ) m

m m
R

m
i i

Fib F K K
= =

→ ⎯⎯→∏ ∏ Q  

gives the exact sequence 
  *( )1

2 2 10 ( ( )) ( ( )) 0mRm m
n m n mFib R Fib R+

−→ π → ⎯⎯⎯→ → π →QZ  
As * 2 2: ( ) ( )p

n nK Kψ ≅ π → π ≅Q QZ  is multiplication with / 1n np p = , we see that 
1

*( ) : m m
mR + →QZ  is given by 

  1
* 0 1 2 1 1( ) ( ,..., ) ( , ( 1) ,..., ( 1) )m

m m m mR x x x x p x x p x−
−= + − + −  

Hence 

  
, even

( ( ))
( / ) , oddj m m

j
Fib R

j
⎧

π = ⎨
⎩ Q

Z
Z

 

 Consider now the diagram 

  
0 1

0 1

( )

m m

m

m m
T P

m
i i

S S U Vm m m m
m m

R
m

i i

F K K

Fib R K K

= =

= =

⎯⎯→ ⎯⎯→

↓ ↓ ↓

⎯⎯→ ⎯⎯→

∏ ∏

∏ ∏

Q

Q

 

Here the maps mT , mP , mU  and mV  are described as follows: 
  0 1 0 1( , ,..., ) ( , ( ),..., ( ))m m mT x x x x C x C x= , 
  0 1 1( , ,..., ) ( ( ),..., ( ))m m mP x x x D x D x=  
  0 1 0 1 1 0 2 2 0 0( , ,..., ) ( , ( ), ( )..., ( ))m m m mU x x x x x x x x x x= + σ + σ + σ  
  1

1 1 0 2 1 1( ,..., ) ( ( 1) , ( ) ,..., ( ) )p p p m
m m m mV x x x x x p x x p x−

−= − ψ − − ψ − − ψ −  
 lt is easily seen that m m mS U T=   and that m m m mV P R U= ,  and thus the diagram 
is commutative. 
 As mU  and mV  induce isomorphisms in homotopy, a 5-lemma argument shows that 
the lift mS  of mS is a homotopy equivalence. 

QED 
 
 

Proposition 3.8 

 * *( ; ) ( ; )mK F K K≅Q Q  and * *0
( ; / ) ( ; / )

m

m i
K F p K K p

=
≅⊕Z Z .  

 
Proof: 
 This is evident, as 1

*( / ; ) 0K K−Σ =Q QZ  and *( ; / ) 0K K p =Q Z . 
QED 
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Proposition 3.9 

 The composite ( )

1

:
m

n n
m m

j

R P K∞

=

Φ →Σ ∏C Q  is null-homotopic. 

Proof: 
 This follows from the definitions and from (3.1.3). 

QED 
 
 
Definition 3.10 

 Define the map 
0 0

:
i i

R K K
∞ ∞

= =
∨ →∨ Q  as the direct limit of the maps 

0 1

:
m m

m
i j

R K K
= =

→∏ ∏ Q  (It follows from (3.6) that the mR 's are compatible for varying m). 

 From (3.5) we see that the composite  

  
( )

1

0 0

n
m

m m
in

i i

P K K
+

Φ∞

= =

Σ ⎯⎯⎯→ ⎯⎯→∏ ∏C  

where the map i is the inclusion of the first ( 1)m + 'st factors, equals  

  
1

( )
1

0

:
m

n n
m

i

P K
+

∞
+

=

Φ Σ →∏C  

We thus get a map ( )

0
:n n

i
P K

∞
∞

=
Φ Σ →∨C . 

 Again, (3.5) and (3.4) shows that the composite 

  
( 1)1

0

njn n

i
P P K

∞ +
∞

Σ Φ∞ ∞ +

=
Σ ⎯⎯⎯→Σ ⎯⎯⎯→∨C C  

equals ( )

0
:n n

i
P K

∞
∞

=
Φ Σ →∨C , where 1: n nj P P +→C C  is the inclusion. By taking the limit 

over n, we obtain a map 

  
0

:
i

P K
∞

∞ ∞

=
Φ Σ →∨C  

 From (3.9) we conclude that R Φ  is null-homotopic, and we get a lift 

: P F∞ ∞Φ Σ →C ,  where 1

0
lim /m i

F F K K
∞

−

→ =
≅ ≅ ∨ Σ∨ Q Z  denotes the homotopy fibre of 

the map R. 
 
 
Theorem 3.11 
 Φ  induces an isomorphism in *( ; / )K p− Z -theory: 
  * * *: ( ; / ) ( ; / )K P p K F p≅∞ ∞Φ Σ ⎯⎯→C Z Z  
 
Proof: 
 As 1( ; / )K p− Z  of both spectra vanishes, Bott periodicity shows that it suffices to  
consider the induced map *Φ  in 0 ( ; / )K p− Z -theory. 
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 We calculate the action of the n'th factor map :n P K∞ ∞Ψ Σ →C . We have that 
  * * * *( ) ( 1) ( ) (1) ( ) (1) ( )n n n n n n nH H f H f f HΨ ξ = Ψ − = Ψ −Ψ = − =  

As 0 (mod )p p≡ , (3.1.3) shows that 
1

1( ) ( ) 1 (mod )
np p

n nf x f x x p
+

+ ≡ ≡ − . Thus 

  * *( ) ( ) 1 ( 1) ( ) ( )
n n n

n
p p p

n n p
f H H H xΨ ξ = ≡ − ≡ − = = μ ξ . 

 From this we conclude that 
  * * *( ) ( )nn p

iΨ = μ  

with np
μ from (1.6). 

 Now we show that *Φ  is injective. Assume that 
1

N

n n
n

x a
=

= β∑  is contained in *KerΦ . 

Then 0* *( ) ( ) 0x i xΨ = = , so 
1

(1) (1)

1

N

n n
n

x a
=

= ⋅ γ∑  with 1 /N N p≤ . 

 Next, 1* * *
( ) ( ) 0np
x i xΨ = μ = , and so 

2
(2) (2)

1

N

n n
i

x a
=

= γ∑  with 2
2 1 / /N N p N p≤ ≤ . 

 Repeating this argument, the injectivity follows. 
 In order to show that *Φ  is surjective, let  0 1( , ,..., ,0,0,...)Ny y y  be an element of 

0 00
( ; / ) ( ; / )

i
K F p K K p

∞

=
=⊕Z Z . Inductively we construct a sequence 0 1, ,...x x  of elements 

of 0 ( ; / )K P p∞ ∞Σ C Z  such that * 0 1 1( ) ( , ,..., , ,0,0,...)i i ix y y y y−Φ = . As 0iy =  for j N>  , 
this process terminates after a finite number of steps, and we conclude that *Φ  is 
surjective. 
 First, * 0*i = ψ  is surjective, so there exists (0)

0 0 ( ; / )x K P p∞ ∞∈ Σ C Z  with 

(0)
0* 0 0( )x yΨ = . Write (0)

0
0

N

j j
j

x a
=

= β∑  

 We adjust (0)
0x  with elements from (1)

0*Ker ({ })nspanΨ = γ . Let (1) (0)
0 0x x v= + ,  

where 0*Kerv∈ Ψ  satisfies the condition that (0)
1* 1* 0( ) ( )v xΨ = −Ψ  – this is possible, as 

(1)1* * * { }
|

m
p span

i
γ

Ψ = μ  is surjective. Furthermore, as (0)
0x  is of  'degree' N in the iβ 's, v is 

of 'degree' at most /N p  in the (1)
iγ 's. 

 Inductively, we kill off the elements ( 1)
* 0( )m

m x −Ψ  with linear combinations of the 
( )m

iγ 's. Each adjustment is of  'degree' at most / mN p , and so this process terminates after 
a finite number of steps. Thus, 0x  is defined to be ( )

0
mx  for log ( )pm N> .  

 Similarly, we can construct 1 2, ,...x x  , and we conclude that *Φ  is surjective. 
QED 

 
 
Corollary 3.12 
 The map : P F∞ ∞Φ Σ →C  is a *

ˆ( ; )pK − Z -equivalence. 
Proof: 
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 By using the Bockstein sequences in K-homology associated to the coefficient 
sequences 
  10 / / / 0n np p p−→ → → →Z Z Z  
we inductively see that Φ  is a *( ; / )nK p− Z -equivalence. By taking the limit, we obtain 
the result. 

QED 
 
 
 We now turn to the rational type of P∞ ∞Σ C . In [S72], it is shown that the map 

: ( )i Q P BU∞ → ×C Z  (which Segal denotes by T), splits ( )Q P∞C  as ( )BU C× ×Z , 
where the space C has finite homotopy groups. Translating this into a statement about 
spectra, we have 
 
 
Proposition 3.13 
 The map : 0,i P K bu∞ ∞Σ → < ∞ >=C  is a rational equivalence. 
 
 
Definition 3.14 

 Define 
1

2 0: i

i

r K S
−

=−∞

→ Σ∏ Q  as follows: It is well known, that  

  2 0i

i

K S
∞

=−∞

Σ∏Q Q  

 

 We let r be the composite 
1

2 0D i

i

K K S
−

π

=−∞

⎯⎯→ ⎯⎯→ Σ∏Q Q , where we use the map D 

of (3.6), and where π  is the projection onto the factors 2 0iSΣ Q  with 1i ≤ − . 
 Let bu  denote the homotopy fibre of r, and note that the natural map bu K→ , 
factors through bu , as ( ) 0i buπ =  for 0i < . 
 
 
Proposition 3.15 
 The K-localization of bu  is bu . 
 
Proof: 

 bu  is obviously K-local, as both K and 
1

2 0i

i

S
−

=−∞

Σ∏ Q  are K-local. (Every rational 

spectrum is K-local, as it follows from the remark prcccding thm. (2.2) in [Mi]). 
 We have to show that the map :f bu bu→  is a K-equivalence. Let W denote the 
homotopy fibre of f. We need to show that *( ) 0K W = . 
 Let nW  denote the n-connected cover of W. We have the sequence of maps 
  1 0 1 20 ...W W W W− −= → → → →  
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and lim
n

nW W−⎯⎯→
= . As * *( ) lim ( )

n
nK W K W−⎯⎯→

= , it suffices to show that *( ) 0nK W− = . 

 This is done inductively: For 0n < , nW−  is the zero spectrum. We obtain nW−  from 

1nW− +  via the cofiber sequence 
  1 ( ( ); )n n nW W H W n− + − −→ → π −  
where ( ( ); )nH W n−π −  is the Eilenberg-MacLane spectrum with the sole non-zero 
homotopy group 
  ( ( ( ); )) ( )n n nH W n W− − −π π − = π  

( )n W−π  is either zero or /Q Z , depending on whether n is even or odd. In both cases, 
( )n W−π  is a torsion group, and *( ( ( ); )) 0nK H W n−π − = , as it follows from [AH], thm. I. 

Inductively we see that *( ) 0nK W− = . 
QED 

 
 
Definition 3.16 
 Let F  be the homotopy fibre of the map 

  
1

1 2 0

1
/ i

i
i

F K K S
∞ −

−

=
=−∞

= ∨ Σ → Σ∨ ∏Q QZ  

which is the map r of (3.14) on the first component, and zero on all the other components. 
 We have immediately that 

  1

1
/

i
F bu K

∞
−

=
= ∨ Σ∨ Q Z  

 
 
Theorem 3.17 

 The ( )pKZ -localization of P∞ ∞Σ C  is the spectrum 1

1
/

i
F bu K

∞
−

=
= ∨ Σ∨ Q Z  

Proof: 
 This follows immediately from the rational statements (3.13) and (3.15), and from 
(3.12). Observe that the constituents of F  are all K-local spectra. 

QED 
 
 
 We wish to calculate the K-localization of the infinite loop space ( )Q P∞C . We use 
 
 
Proposition 3.18 ([B82], (3.1)) 
 Let X be a connective spectrum. Then there are natural isomorphisms 
  ( ) ( ) , 2i K i KL X L X i∞π Ω ≅ π >  
  ( ) ( ) , 2i K iL X X i∞π Ω ≅ π <  
and a natural short sequence: 
  2 2 2 20 tors( ( )) ( ) ( ) / tors( ( )) 0K KL X L X X X∞→ π → π Ω → π π → . 
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Theorem 3.19 
 The ( )pKZ -localization of the space ( )Q P∞C  is 

  
1

[ / ] 2,
i

BU BU
∞

=

× × Ω < ∞ >∏ QZ Z  

where [ / ]BUΩ Q Z  is the zero'th space in the Ω -spectrum 1 /K−Σ Q Z . 
Proof: 
 Making P∞ ∞Σ C  into an Ω -spectrum and taking the corresponding infinite loop 

space map, we get 
1

: ( ) [ / ]
i

Q P BU BU
∞

∞ ∞

=

Ω Φ → × × Ω∏C QZ Z , and as the latter space is 

K-local, we get a map 
1

: ( ) [ / ]K K
i

L L Q P BU BU
∞

∞ ∞

=

Ω Φ → × × Ω∏C QZ Z . 

 (3.18) shows that this map is a homotopy equivalence in all dimensions except 
possibly 1 and 2. 
 We have that 2 ( )P∞ ∞π Σ ≅C Z , and that 

  1
2 2 21 1
( ) ( ) ( / ) 0K i i
L P bu K

∞ ∞
∞ ∞ −

= =
π Σ = π ⊕ π Σ ≅ ⊕ ≅⊕ ⊕C Q Z Z Z  

(3.18) shows that 2 ( ( ))KL Q P∞π ≅C Z , and we conclude that KL ∞Ω Φ  gives an 
equivalence in homotopy in dimension 2. 
 By killing off the 1π 's of [ / ]BUΩ Q Z  ( 1( [ / ]) /BUπ Ω ≅Q QZ Z ), we get the result. 

QED 
 
 
 
4. The K-localization of BG∞Σ  and ( )Q BG+  
 
 We now calculate the K-localization of the suspension spectrum of the space BG  
and of the corresponding infinite loop space ( )Q BG+ , where / nG p= Z  is a cyclic p-
group.  p is all odd prime. As in §2 we select a prime l, such that 2l p+ Z  generates the 
unit group 2( / )p ×Z Z . 
 
 We start, by studying the spectrum ( [ ])lK GF  – algebraic K-theory of the group ring 

[ ]l GF . This spectrum is defined by using an infinite loop space machine, e.g. [S74], on 
the category ( [ ])l GFGL  of all projective [ ]l GF -modules and [ ]l GF -isomorphisms; the 
group-law is the direct sum. This construction insures that 0 ( ( [ ]))lK Gπ F  is isomorphic to 

( )
l

R GF  – the Grothendieck group of projective [ ]l GF -modules. 
 
 
Proposition 4.1 

 The spectrum ( [ ])lK GF  splits as 
0

( )
i

n

l
i

K
=
∏ F , where ng G p= = , 0l l= , and 

1i ip p
il l l

−

= −  for 0i > . 
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Proof: 
 The group ring [ ]l GF  is semi-simple, as ( , ) 1l p = , and  
  

0 1
[ ] ...

nl l l lG ≅ × × ×F F F F  

Indeed, the factor group / ipZ  of G has an irreducible representation over lF  of 
dimension 1i ip p −− , as the finite field 

il
F  has a ip 'th root of unity. This representation 

induces an irreducible representation V of G of the same dimension, giving the factor 
Hom ( , )

iG lV V ≅ F  
QED 

 
Corollary 4.2 
 0 ( ( [ ]); / )lK K G pF Z  is a free / pZ -module on np  generators. 
 1( ( [ ]); / ) 0lK K G p =F Z . 
Proof: 
 This follows immediately from (4.1) and (2.7). 

QED 
 
 
Definition 4.3 
 Let G be a finite group. Define GT  to be the topological category, whose objects are 
the G-sets of the form ( /1), 0n G n ≥ , and whose morphisms are G-bijections. The 
topologies on the object set and on each morphism set are thle discrete topologies. We 
equip GT  with the composition – disjoint union of sets. 
 
 
 The group completion ( )GB BΩ T  is an infinite loop space, cf. [S74], and in fact 
 
 
Lemma 4.4 
 The infinite loop space ( )GB BΩ T  corresponding to GT  is ( )Q BG+ . 
Proof: 
 We have immediately that Hom ( ( /1), ( /1))

G nn G n G G≅ Σ ∫T  as a topological group. 

Thus, 
0

( ) ( ( )G n
n

B B B B G
≥

Ω Ω Σ ∫T . 

 We have the 'Dyer-Lashof-equivalence' (cf. [MM], p.49): 
  

0

( ) (( ) / )
n

n
n

n

Q X B E XΣ
≥

Ω Σ × ≈ , 

where nΣ  acts on nX  by permuting the coordinates. The equivalence relation ≈  
identifies points of 

1

1
1 n

n
nE X

−

−
− ΣΣ ×  with the subspace nF  of 

n

n
nE XΣΣ ×  given by  

  1 2{( ; , ,..., ) | : *}
n

n
n n n jF e x x x E X j xΣ= ∈ Σ × ∃ = . 

Here * is the basepoint of X. 
 Since ( ) ( )

n n

n n
n n nE BG E BG FΣ + ΣΣ × = Σ × , and ( ) ( )

n

n
n nE BG B GΣΣ × Σ ∫ , we get 

the result. 
QED 
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 The functor ( [ ])G l G→ FT GL  which sends the G-set ( /1)n G  to its permutation 
representation [ ]n

l GF  is a map of permutative categories, so we get an infinite loop map 
: ( ) ( [ ])le Q BG K G+ → F . We also denote by e the associated morphism between spectra 

(4.5)  : ( ) ( [ ])le BG K G∞
+Σ → F e : W(BG,) K(IFt[GI). 

 We furthermore use the splitting of spectra 

(4.6)  0( )BG BG S∞ ∞
+Σ ≅ Σ ∨ , 

where 0S  is the sphere spectrum, to define the map 

(4.7) : ( [ ])le BG K G∞Σ → F , 

as the composite ( ) ( [ ])e
lBG BG K G∞ ∞

+Σ ⎯⎯→Σ ⎯⎯→ F . 
 
 
Theorem 4.8 
 : ( [ ])le BG K G∞Σ → F  gives an equivalence in *( ; / )K p− Z -theory. 
Proof: 
 From (1.8) and (4.2) we know that *( ; / )K BG p∞Σ Z  and *( ( [ ]); / )lK K G pF Z  are 
abstractly isomorphic. We construct a commutative diagram 
 

(4.9) 
( [ ])

( )

e
l

B

K

BG K G

P L P

∞

∞
Σ χ Α

Φ∞ ∞ ∞ ∞

Σ ⎯⎯→
↓ ↓
Σ ⎯⎯→ Σ

F

C C
 

 
and show that the images if B∞Φ Σ χ  and of A in *( ( ); / )KK L P p∞ ∞Σ C Z  are the same. 
As furthermore B∞Φ Σ χ  and A give monomorphisms in *( ; / )K p− Z -theory, we 
conclude that e  is a *( ; / )K p− Z -equivalence. 
 B∞Σ χ  comes from the map 1: G Sχ →  of (1.8), while Φ  is defined in (3.10). A is 
the product of maps : ( )

jj lA K K→F , where we observe the splittings (3.10) and (4.1). 

(As we work with / pZ -coefficients, it doesn't matter whether we use K or 1 /K−Σ Q Z , as 
0 1 0/ / /K S p K S p−∧ ≅ Σ ∧QZ Z Z ). jA  is the 'Brauer lift' map of (2.6), and jA  goes into 

the n j− 'th component of 
0

( )K s
L P K

∞
∞ ∞

=
Σ = ∨C . 

 To show that (4.9) commutes, it suffices to show the commutativity of 
 

(4.10) 
( [ ]) ( )

( )n jp

e

l l

B A j
i

K

BG K G K

P L P−

π
∞

∞
Σ χ

μ∞ ∞ ∞ ∞

Σ → →
↓ ↓

Σ ⎯⎯⎯→ Σ

F F

C C
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We thus have two elements n jp
i B−

∞μ Σ χ  and jA eπ  of *
*[ , ] ( )BG K K BG∞Σ = . 

According to the Atiyah completion theorem, [A61], (7.2), * ^( ) ( ) pK BG R G=  . Both 

n jp
i B−

∞μ Σ χ  and jA eπ  corresponds to elements in ( )R G : χ  – the standard 

character of G sending 1 np+ Z  to exp(2 / )ni pπ  – gives, after raising it to the n jp − 'th 
power, the character sending 1 np+ Z  to exp(2 / )ji pπ . And the Brauer lift of the 
irreducible representation of G into 

jlF  is easily seen to be the same character. We thus 
have established the commutativity of (4.9). 
 Now, the images of n jp

i B−
∞μ Σ χ  and of jA  in *( ; / )K p− Z -theory are clearly the 

same, namely * 0 1( , ,..., )n jp
i −< β β β > . 

QED 
 
 We are now able to calculate ( )KL BG∞Σ : 
 
Definition 4.11 
 Let q be a prime power. Let qJ  be the fibre of 1:q K Kψ − → . Let : ( )q qa K →F J  
be the map obtained from the diagram 

  

1

1

( ) 0, 2,
q

q

q

a

q

K K K

K K

ψ −

ψ −

⎯⎯→ < ∞ > ⎯⎯⎯→ < ∞ >
↓ ↓ ↓

⎯⎯→ ⎯⎯⎯→

F

J

 

 
 
Proposition 4.12 
 : ( )q qa K →F J  is a *( ; / )K p− Z -equivalence. 
Proof: 
 The proof is analogous to that of (3.15), the main point being that 
  * *( ( ( ); ); / ) ( ( ( ) / ; )) 0n nK H F p K H F p n− −π − = π ⊗ − =ZZ Z  
where F denotes the homotopy fibre of the map : ( )q qa K →F J . 

QED 
 
 
Proposition 4.13 
 Let q be a prime power. Let, as in [B79], p.269, qJ  be the homotopy fibre of the 

map 1: ( , 1)qk H M−→ − = ΣQ QJ , inducing the map →QZ  in 1( )−π −  (recall that the 
Hurewicz map 1 1: ( ; ) ( ; )H H− −− → π −Q Q  is an isomorphism, as it follows from Serre 
theory). Then the K-localization of ( )qK F  is qJ .  
 
Proof: 
 As 1( ( )) 0qK−π =F , we get a lift of the map a of (4.10) to : ( )q qa K →F J . (4.11) 
implies that a  is a *( ; / )K p− Z -equivalence. 
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 The only non-zero *( ; )K − Q -homology groups of both ( )qK F  and qJ  reside in 
dimension zero and are isomorphic to Q . The map a  is seen to be a *( ; )K − Q -
equivalence, and the result follows. 

QED 
 
 
Definition 4.14 

 Define ( [ ])l GFK  as the K-local spectrum 
0

i

n

l
i=
∏J . Define the K-local spectrum 

1 ( [ ])[ / ]l G−Σ F QK Z  as the homotopy fibre of the rationalization map  
  ( [ ]) ( [ ])l lG G→F F QK K  
 
 
 As a corollary to (4.12) we have 
 
 
Corollary 4.15 

 The map 
0 0 0

: ( [ ]) ( ) ( [ ])
i i

n n n

l l l l
i i i

A a K G K G
= = =

= = → =∏ ∏ ∏F F FJ K  is a *( ; / )K p− Z -

equivalence. 
 
 
Theorem 4.16 
 The K-localization of BG∞Σ  is 1 ( [ ])[ / ]l G−Σ F QK Z  
Proof: 
 The composite 
  ( [ ]) ( [ ])e

l lBG K G G∞Σ ⎯⎯→ ⎯⎯→F FA K  
factors through 1' : ( [ ])[ / ]le BG G∞ −Σ → Σ F QK Z , as the homotopy groups of BG∞Σ  are 
finite. 
 lt follows from (4.8) and (4.15) that e' is a *( ; / )K p− Z -equivalence, and as both 

BG∞Σ  and 1 ( [ ])[ / ]l G−Σ F QK Z  vanish rationally, the theorem follows. 
QED 

 
 
 By using the splitting (4.6) and the fact that 0

1KL S =J , [H79], p.269, we get 
 
 
Corollary 4.17 

 1 1
1 1 0

( ) ( [ ])( / ) [ / ]
i

n

K l li
L BG G∞ − −

+ =
Σ ∨ Σ ∨ Σ∨F Q QJ K J JZ Z  

 
 
 And from (3.18) we finally get: 
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Theorem 4.18 
(1)  The K-localization of the space ( )Q BG  is ( [ ])( / )lK GΣ F Q Z –  the zero'th space of  
 the Ω -Spectrum 1 ( [ ])[ / ]l G−Σ F QK Z . 
(2) The K-localization of the space ( )Q BG+  is ( ) ( [ ])( / )l lK K G×ΩF F Q Z . 
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