The *K*-localizations of Some Classifying Spaces

Kenneth Hansen

This is part 2 of my Ph.D. thesis, which I wrote at Aarhus University, Matematisk Institut, in 1991. It has appeared in Matematisk Instituts Preprint Series, no. 36, 1991.

The two other parts are Oriented, Equivariant *K*-theory and the Sullivan Splitting The Equivariant *K*-localization of the *G*-Sphere Spectrum In this paper the *K*-theoritical localizations of the suspension spectra for the spaces $\mathbb{C}P^{\infty}$ and $B\mathbb{Z}/p^n$, where *p* is an odd prime, are calculated. The result in the case af $\mathbb{C}P^{\infty}$ is already known; it is to be found in [R], (9.2). The methods used here are completely new, although.

This paper is split into four parts; the first two which contains specific calculations of *K*-homology groups. In section 1 *K*-theory of $\mathbb{C}P^{\infty}$ and $B\mathbb{Z}/p^n$ is described, while section 2 calculates *K*-homology of the spectra *K* and $K(\mathbb{F}_l)$. These last calculations rely heavily on the result of Adams, [A74], p. 100, describing the behaviour of the Bott-map in *K*-theory.

In section 3 the *K*-localizations of $\Sigma^{\infty} \mathbb{C}P^{\infty}$ and of the corresponding infinite loop space $Q(\mathbb{C}P^{\infty})$ are calculated, and finally in section 4 we relate the *K*-localization of $\Sigma^{\infty}B\mathbb{Z}/p^n$ to algebraic *K*-theory of the group ring $\mathbb{F}_{l}[\mathbb{Z}/p^n]$.

Throughout the paper we work within the category of spectra as described in [A74]. Especially, we use the following notation:

If X is a spectrum and n an integer, we denote the *n*-connected cover of X by $X < n, \infty >$.

K is the periodic spectrum representing complex *K*-theory, and we define *K*-homology of the spectrum *X* to be $K_*(X) = \pi_*(K \wedge X)$.

If X is a topological space, then we denote by $\Sigma^{\infty} X$ the suspension spectrum of X. $\Sigma^{\infty} X$ is defined to have the *n*-th space $(\Sigma^{\infty} X)_n = \Sigma^n X$ for $n \ge 0$, and if *n* is negative, then $(\Sigma^{\infty} X)_n$ is the trivial space.

I would like to thank Marcel Bökstedt for suggesting the present line of proof and for much help in carrying out. I would also like to thank my advisor Ib Madsen for help with the project, in particular in connection with §3 below.

1. *K*-theory of $\mathbb{C}P^{\infty}$ and $B\mathbb{Z}/p^n$

In this section we study the *K*-theory of the spaces $\mathbb{C}P^{\infty} = BS^1$ and $B\mathbb{Z}/p^n$, where *p* is a fixed, odd prime.

Proposition 1.1 ([A62], (7.2)) Let n > 0 be an integer. Then $K^0(\mathbb{C}P^n) \cong \mathbb{Z}[\xi]/(\xi^{n+1})$ and $K^1(\mathbb{C}P^n) = 0$, where $\xi = H - 1$ is the reduced Hopf bundle.

By applying the universal coefficient sequence

(1.2)
$$0 \to \operatorname{Ext}_{\mathbb{Z}}(K^{*-1}(X), \mathbb{Z}/p) \to K_{*}(X; \mathbb{Z}/p) \to \operatorname{Hom}_{\mathbb{Z}}(K^{*}(X), \mathbb{Z}/p) \to 0$$

of [Y], p.312 and 320, we obtain

Proposition 1.3

- (1) $K_0(\mathbb{C}P^n;\mathbb{Z}/p)$ is a free \mathbb{Z}/p -module generated by $\beta_0,\beta_1,...,\beta_n$, where β_i is the dual of ξ^i under the isomorphism $K_0(\mathbb{C}P^n;\mathbb{Z}/p) \cong \operatorname{Hom}_{\mathbb{Z}}(K^0(\mathbb{C}P^n),\mathbb{Z}/p)$, i.e.
- (1.4) $<\xi^i,\beta_i>=\delta_{ij}$
- (2) $K_1(\mathbb{C}P^n;\mathbb{Z}/p)=0$

By taking the limit we get

Corollary 1.5

- (1) $K_0(\mathbb{C}P^{\infty};\mathbb{Z}/p)$ is a free \mathbb{Z}/p -module with the countable basis $\{\beta_0,\beta_1,...\}$.
- (2) $K_1(\mathbb{C}P^\infty;\mathbb{Z}/p)=0.$

Let $m \in \mathbb{N}$. Consider the map $\overline{\mu}_m : S^1 \to S^1 : \exp(2\pi i x) \mapsto \exp(2\pi i m x)$. Define $\mu_m : \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ as $B\overline{\mu}_m$, where we recall that $\mathbb{C}P^{\infty} = BS^1$.

Proposition 1.6

 μ_m restricts to a map $\mathbb{C}P^n \to \mathbb{C}P^n$. The effect of μ_{p^s} in K-homology with coefficients in \mathbb{Z}/p is as follows: $(\mu_{p^s})_*(\beta_i) = \beta_{i/p^s}$ if p^s divides *i*, and is zero otherwise.

Proof:

The composite $\mathbb{C}P^n \to \mathbb{C}P^{\infty} \xrightarrow{\mu_m} \mathbb{C}P^{\infty}$ homotopic to a cellular map. As the 2*n*-skeleton of $\mathbb{C}P^{\infty}$ is $\mathbb{C}P^n$, the image $\mu_m(\mathbb{C}P^n)$ is contained in $\mathbb{C}P^n$, giving the map $\mu_m:\mathbb{C}P^n \to \mathbb{C}P^n$.

Letting *H* be the Hopf-bundle, we see that $\mu_m^*(H) = H^m$. By using the binomial theorem, we get

$$(\mu_{p^s})^*(\xi) = (\mu_{p^s})^*(H-1) = H^{p^s} - 1 \equiv (H-1)^{p^s} = \xi^{p^s} \pmod{p}$$

The duality between the ξ^i 's and the β_i 's gives

 $<\xi^{r},(\mu_{p^{s}})_{*}\beta_{m}>=<(\mu_{p^{s}})^{*}\xi^{r},\beta_{m}>=<\xi^{rp^{s}},\beta_{m}>$

which is non-zero if and only if $m = rp^s$.

QED

We now turn to the case of $B\mathbb{Z}/p^n$. For the sake of clarity we let *G* denote \mathbb{Z}/p^n , and we let *g* be the order of *G*, $g = p^n$.

Recall that we have the *G*-action on S^{2n+1} given as follows: S^{2n+1} is the unit sphere in \mathbb{C}^{n+1} . The element $a + g\mathbb{Z}$ of *G* acts on $(z_0, z_1, ..., z_n) \in \mathbb{C}^{n+1}$ by

 $(a+g\mathbb{Z})(z_0, z_1, ..., z_n) = (\eta^a z_0, \eta^a z_1, ..., \eta^a z_n)$

where $\eta = \exp(2\pi i/g)$. This *G*-action restricts to S^{2n+1} , and the corresponding orbit space is the lens space denoted by $L^{n}(g)$.

The inclusions $S^{2n+1} \to S^{2n+3}$ gives inclusions $L^n(g) \to L^{n+1}(g)$, and it is readily seen that the space $\lim L^n(g)$ is homotopy equivalent to *BG*.

Furthermore, the standard map $\chi: G \to S^1: a + g\mathbb{Z} \mapsto \eta^a$ gives rise to maps $B\chi: L^n(g) \to \mathbb{C}P^n$ and $B\chi: BG \to \mathbb{C}P^\infty$.

Let β_i be the dual to $\xi^i = (B\xi)^*(H-1)^i$; i.e. we have the relation

(1.7)
$$<\xi^i,\beta_j>=\delta_{ij}$$
.

Proposition 1.8

Let $<\beta_0,\beta_1,...,\beta_{g-1}>$ denote the \mathbb{Z}/p -module freely generated by $\beta_0,\beta_1,...,\beta_{g-1}$.

Then

(i) $K_0(BG; \mathbb{Z}/p) = <\beta_0, \beta_1, ..., \beta_{g-1} >$ and

(ii) $K_1(BG; \mathbb{Z}/p) = 0.$

Proof:

This proof is, as that of (1.3), essentially an application of the universal coefficient sequence, (1.2): $K^0(L^n(g))$ is shown in [Ch], thm. 3, to be

 $K^{0}(L^{n}(g)) \cong \mathbb{Z}[\xi]/((1+\xi)^{g}-1,\xi^{n+1})$

For n > g we have that $K^0(L^n(g))$ is a free \mathbb{Z} -module on the generators $\xi^0, \xi^1, ..., \xi^{g^{-1}}$. By using (1.2) and by taking the limit, we obtain $K_0(BG; \mathbb{Z}/p)$.

An argument using the Atiyah-Hirzebruch spectral sequence shows that $K^1(L^n(g)) \cong \mathbb{Z}$, and that this \mathbb{Z} originates in the top cohomology $H^{2n+1}(L^n(g)) \cong \mathbb{Z}$, which is the only non-zero odd-dimensional cohomology of $L^n(g)$. But the restriction map $K^1(L^{n+1}(g)) \to K^1(L^n(g))$ is zero, and we see that $K_1(BG; \mathbb{Z}/p)$ vanishes.

QED

2. K-theory of topological and algebraic K-theory

In this section we continue our calculations. We calculate the K-homology with coefficients in \mathbb{Z}/p of the spectra *K* and $K(\mathbb{F}_{l_i})$, where *K* is the (periodic) spectrum representing complex *K*-theory, and where the spectrum $K(\mathbb{F}_{l_i})$ is algebraic *K* theory of the finite field with l_i elements, \mathbb{F}_{l_i} ; l_i is assumed to be of the form $l_i = l^{p^i - p^{i-1}}$ for i > 0

and $l_0 = l \cdot l$ is here an odd prime, such that $l + p^2 \mathbb{Z}$ generates the unit group $(\mathbb{Z}/p^2)^{\times}$ – such primes exist according to a theorem of Dirichlet, cf. [Ap], (7.9).

This last calculation is to be used in §4 – we want to calculate $K_*(K(\mathbb{F}_{l}[G];\mathbb{Z}/p))$, where *G* is a cyclic *p*-group; $G = \mathbb{Z}/p^n$, and we have the splitting of (4.1):

$$K(\mathbb{F}_{l}[G]) = \prod_{i=0}^{n} K(\mathbb{F}_{l_{i}})$$

We recall from [A74], p.204, that the spectrum *K* has the spaces $K_{2n} = BU$ and $K_{2n+1} = U$. The map $B: \Sigma^2 K_{2n} = \Sigma^2 BU \rightarrow BU = K_{2n+2}$ is the adjoint of the Bott isomorphism $BU \times \mathbb{Z} \rightarrow \Omega^2 BU$.

Denote by β_i also the image of $\beta_i \in K_0(BU(1); \mathbb{Z}/p) = K_0(\mathbb{C}P^{\infty}; \mathbb{Z}/p)$ under the map $i_H : BU(1) \to BU$ given by the Hopf-bundle. Then we have from [A74], p.47:

Proposition 2.1

(i) $K_0(BU;\mathbb{Z}/p) \cong \mathbb{Z}/p[\beta_1,\beta_2,...]$

(ii) $K_1(BU; \mathbb{Z}/p) = 0$.

Theorem 2.2

The map $i_*: K_0(BU; \mathbb{Z}/p) \to K_0(BU; \mathbb{Z}/p)$ is surjective. The kernel of i_* is additively generated by all elements decomposable in the β_i 's and by the family $\{\gamma_n\}_{n>0}$,

where
$$\gamma_n = (-1)^n \sum_{i=np}^{np+p-1} (-1)^i \beta_i$$
.

Proof:

Write X for the suspension spectrum of the space BU. The periodicity map B induces a spectrum map $B: X \to \Sigma^{-2}X$, and K is the direct limit spectrum of the system $X \xrightarrow{B} \Sigma^{-2}X \xrightarrow{B} \Sigma^{-4}X \xrightarrow{B} \dots$

Thus, $K_0(K; \mathbb{Z}/p)$ is the direct limit of

 $K_0(BU; \mathbb{Z}/p) \xrightarrow{B_*} K_2(BU; \mathbb{Z}/p) \xrightarrow{B_*} \dots$

The map B_* is described in [A74], p. 100: B_* annihilates elements decomposable in β_i 's, and

(2.3) $B_*(\beta_i) = u(j\beta_i + (j+1)\beta_{j+1}) + \text{decomposables}, \ j > 0$

where $u = \pi_2(K)$ is the generator (Bott element), cf. [A74], p.38.

Clearly i_* maps all decomposables to zero, and so we need only study B_* on the subspace A of $K_0(BU;\mathbb{Z}/p)$ additively generated by the β_i 's.

Split *A* into submodules A_n , n = 0, 1, 2, ..., where A_0 is additively generated by $\beta_1, \beta_2, ..., \beta_{p-1}$, and where A_n is additively generated by $\beta_{np}, \beta_{np+1}, ..., \beta_{np+p-1}$ for n > 0.

Then $A = \bigoplus_{n=0}^{\infty} A_n$, and $B_*(A_n) \subseteq u \cdot A_n + D$, where *D* is the submodule of $K_0(BU; \mathbb{Z}/p)$ additively generated by all the decomposable elements.

Let \overline{B}_n denote the composite map

$$A_n \xrightarrow{B_*|_{A_n}} K_0(BU; \mathbb{Z}/p) \xrightarrow{\pi_n} A_n$$

where $\pi_n : K_0(BU; \mathbb{Z}/p) \to A_n$ is the projection map. Notice that the eigenvalues of \overline{B}_n are 0, u, 2u, ..., (p-1)u, for n > 0, and u, 2u, ..., (p-1)u for n = 0.

The eigenvector corresponding to the eigenvalue 0 for \overline{B}_n , where n > 0, is easily seen to be

$$\gamma_n = (-1)^n \sum_{i=np}^{np+p-1} (-1)^i \beta_i$$

It is also possible to find eigenvectors corresponding to the other eigenvalues: Let $v = \sum_{i=np}^{np+p-1} a_i \beta_i$ be a vector in A_n . Then $B_*(v) = 0 \cdot \beta_{np} + \sum_{i=np+1}^{np+p-1} i(a_i + a_{i-1})\beta_i$. If v is an

eigenvector with eigenvalue $ux, x \neq 0$, then we have the equations:

$$0 = xa_{np}$$
 $a_{np} + a_{np+1} = xa_{np+1}$ $2(a_{np+1} + a_{np+2}) = xa_{np+2}$ etc
These equations can be solved inductively. We have that $a_i = 0$ for $i = 0, 1, ..., x - 1$,
 $a_x = 1$, and for $i > x$ we have the recurrence relation

$$a_i = ia_{i-1} \cdot (x-i)^{-1}$$

Now, by taking the limit over the B_* 's, we get the result.

QED

For later use we introduce the following

Definition 2.4

Define for integers n > 0 and $s \ge 0$ the elements $\gamma_n^{(s)}$ of $K_0(\mathbb{C}P^{\infty})$ as follows:

$$\gamma_n^{(0)} = \beta_n$$

$$\gamma_n^{(1)} = \gamma_n \quad \text{and}$$

$$\gamma_n^{(s)} = (-1)^n \sum_{j=pn}^{pn+p-1} (-1)^j \gamma_j^{(s-1)}$$

Proposition 2.5

(1)
$$(\mu_p)_*(\gamma_n^{(s)}) = \gamma_n^{(s-1)}$$

(2) $(\mu_{p^s})_*(\gamma_n^{(s)}) = \beta_n$
(3) $(\mu_{p^t})_*(\gamma_n^{(s)}) = 0$ for $n \ge 1, t \ge n + s + 1$.

Proof:

The first equation is shown by induction in *s*; the main point is that $\mu_{p^*}(\gamma_n) = \beta_n$. The second equation follows immediately from the first.

In order to show (3), we observe that the β_i -term in $\gamma_n^{(s)}$ having the most *p*-divisible index *i* is β_{np^s} . This term survives at most $s + 1 + \log_p(n) \le s + n + 1$ attacks by μ_{p^*} .

QED

Let q be a prime power. Then there is a cofiber sequence of spectra

(2.6) $K(\mathbb{F}_q) \xrightarrow{\nu} K < 0, \infty > \xrightarrow{\psi^q - 1} K < 2, \infty >$

The map $v: K(\mathbb{F}_q) \to K < 0, \infty >$ is a 'Brauer lift' map as described in e.g. [FP], 166 ff.

Proposition 2.7

Let $l_i = l^{p^i - p^{i-1}}$ for i > 0 and $l_0 = l$. Then, with the notation from (2.2),

- (1) $v_*: K_0(K(\mathbb{F}_{l_i}); \mathbb{Z}/p) \to K_0(K; \mathbb{Z}/p)$ is a monomorphism, whose image is generated by the set $\{i_*(\beta_1), ..., i_*(\beta_{p^i-1})\}$, and
- (2) $K_1(K(\mathbb{F}_l);\mathbb{Z}/p) = 0.$

Proof:

Write, for the sake of simplicity, q instead of l_i . We start by calculating the action of the map $\psi^q - 1: \Sigma^{\infty} BU \rightarrow \Sigma^{\infty} BU$ in *K*-homology, where $\Sigma^{\infty} BU$ is the suspension spectrum of the space *BU*. As the map i_* of (2.2) annihilates decomposable elements, it suffices to calculate $\psi^q - 1$ on the β_i 's.

Write
$$(\psi^q - 1)\beta_n = \sum_{j=1}^{\infty} a_{nj}\beta_j$$
. Then we have
 $a_{nj} = \langle (\psi^q - 1)\beta_n, \xi^j \rangle = \langle \beta_n, (\psi^q - 1)\xi^j \rangle = \langle \beta_n, g_j(\xi) \rangle =$
the n'th coefficient in $g_j(\xi)$

where $g_i(\xi)$ is the polynomial given by

$$g_{i}(\xi) = (\psi^{q} - 1)(\xi^{j}) = (\psi^{q} - 1)(H - 1)^{j} = (H^{q} - 1)^{j} - (H - 1)^{j} = ((\xi + 1)^{q} - 1)^{j} - \xi^{j}$$

 $g_j(x)$ is of degree jq, while the degree of the 'lowest' occuring term is $p^i + j - 1$. This is seen as follows:

 $q \equiv 1 \pmod{p^i}$, so write $q = bp^i + 1$. As $l + p^2 \mathbb{Z}$ generates $(\mathbb{Z}/p^2 \mathbb{Z})^{\times}$, (b, p) = 1. We now have that

$$(x+1)^{q} = (x+1)(x+1)^{bp^{i}} \equiv (x+1)(x^{p^{i}}+1)^{b} = 1 + x + bx^{p^{i}} + \text{higher terms}$$

Thus

$$g_j(x) = ((x+1)^q - 1)^j - x^j = (x+bx^{p^i} + \text{higer terms})^j - x^j =$$

 jbx^{p^i+j-1} + higher terms

This shows that

$$(\Psi^q - 1)(\beta_n) = 0$$
 for $n \le p^i - 1$

while

$$(\psi^q - 1)(\beta_n) = (n + 1 - p^i)b\beta_{n+1-p^i} + \text{higher terms}$$

It is seen that each of the blocks A_n of (2.2) projects to a (p-1)-dimensional subspace of the block $A_{n-p^{i-1}}$ for for $n \ge p^{i-1}$.

Consider now the commutative diagram

$$\begin{array}{cccc} K_0(BU;\mathbb{Z}/p) & \xrightarrow{\psi^q - 1} & K_0(BU;\mathbb{Z}/p) \\ & i_* \downarrow & & \downarrow i_* \end{array} \\ 0 \to K_0(K(\mathbb{F}_q);\mathbb{Z}/p) \to & K_0(K;\mathbb{Z}/p) & \xrightarrow{\psi^q - 1} & K_0(K;\mathbb{Z}/p) & \to K_1(K(\mathbb{F}_q);\mathbb{Z}/p) \to 0 \end{array}$$

As $\{i_*(\beta_j)\}_{j \in \mathbb{N}, (j,p)=1}$ is a basis for $K_0(K; \mathbb{Z}/p) \cong K_0(BU; \mathbb{Z}/p)/\operatorname{Ker}(i_*)$, we see that $\psi^q - 1$ is injective on the blocks $i_*(A_n)$ with $n \ge p^{i-1}$. This gives the statement about $K_0(K(\mathbb{F}_q); \mathbb{Z}/p)$.

Furthermore, $\psi^q - 1: K_0(K; \mathbb{Z}/p) \to K_0(K; \mathbb{Z}/p)$ is surjective: Let

$$x = \sum_{\substack{n=1\\(n,p)=1}}^{N} a_n \cdot i_*(\beta_n) \in K_n(K; \mathbb{Z}/p)$$

We show inductively in *N* that $x \in \text{Im}(\psi^q - 1)$. As $x - (\psi^q - 1)(b^{-1}N^{-1}a_n\beta_{N+p^t-1})$ is of lower degree than *x*, we get the inductive conclusion, proving the statement about $K_1(K(\mathbb{F}_q);\mathbb{Z}/p)$

3. The *K*-localization of $\Sigma^{\infty} \mathbb{C}P^{\infty}$ and of $Q(\mathbb{C}P^{\infty}_{+})$

In this section we calculate the *K*-localizations of the suspension spectrum of the space $\mathbb{C}P^{\infty}$ and of the corresponding infinite loop space $Q(\mathbb{C}P^{\infty})$. We work at an fixed, odd prime *p*.

Definition 3.1

Define the polynomials $\{f_n(x)\}_{n\in\mathbb{N}}$ in $\mathbb{Z}[x]$ inductively by

(1)
$$f_0(x) = 1$$

- (2) $f_1(x) = x^p 1$, and
- (3) $f_{n+1}(x) = f_n(x^p) p^n f_n(x)$ for n > 1.

Proposition 3.2

- (1) $f_n(x)$ is a polynomial of degree p^n and leading coefficient 1. Only monomials of degree divisible by p occurs in $f_n(x)$.
- (2) For j = 0, 1, 2, ..., n we have that $f_{n+1}^{(j)}(1) = 0$.
- (3) $(x-1)^n$ divides $f_n(x)$.
- (4) If $\psi^p : \mathbb{Z}[x] \to \mathbb{Z}[x]$ is the operation defined by

$$\psi^p(g(x)) = g(x^p)$$

then

$$f_{n+1}(x) = (\psi^{p} - p^{n}) \circ (\psi^{p} - p^{n-1}) \circ \dots \circ (\psi^{p} - p) \circ (\psi^{p} - 1)(f_{0}(x))$$

Proof:

Note that (1) and (4) are obvious from the definitions, and (3) follows directly from (2).

In order to show (2), we differentiate the relation (3.1.3) j times. Inductively, we get

$$f_{n+1}^{(j)}(x) = p^{j} x^{j(p-1)} f_{n}^{(j)}(x^{p}) + \sum_{k=1}^{j-1} s_{k}(x) f_{n}^{(k)}(x^{p}) - p^{n} f_{n}^{(j)}(x)$$

where the $s_k(x)$'s are polynomials.

For j < n the statement that $f_{n+1}^{(j)}(1) = 0$ follows from the corresponding statement about $f_n(x)$. For j = n we see that only two parts of $f_{n+1}^{(n)}(1)$ doesn't vanish: From $f_n(x^p)$ we get a part $p^n x^{n(p-1)} f_n^{(n)}(x^p)$, and from $-p^n f_n(x)$ we get $-p^n f_n^{(n)}(x)$. But these cancel for x = 1.

Definition 3.3

Define, for m, n > 0, the map $\Psi_m^{(n)} : \mathbb{C}P^n \to BU$ as the composite $\mathbb{C}P^n \longrightarrow \mathbb{C}P^{\infty} \xrightarrow{f_m(H)} BU$, where $f_m(H) : \mathbb{C}P^{\infty} \to BU$ classifies the virtual bundle $f_m(H)$.

Proposition 3.4

For $m \ge n+1$ the map $\Psi_m^{(n)}$ is null homotopic.

Proof:

 $\Psi_m^{(n)} \in [\mathbb{C}P^n, BU] = \overline{K}^0(\mathbb{C}P^n) \text{ corresponds to the bundle } f_m(H) \text{ over } \mathbb{C}P^n. \text{ From}$ (3.1.3) we have that $f_m(H) = (H-1)^m g_m(H) = \xi^m g_m(H)$, and as $\xi^{n+1} = 0$ in $\overline{K}^0(\mathbb{C}P^n)$, $K^\circ(\mathbb{C}P^n)$, $\Psi_m^{(n)}$ is the null map.

QED

QED

Definition 3.5

Define the map $\Psi_m^{(n)} : \Sigma^{\infty} \mathbb{C}P^n \to K$ as the composite $\Sigma^{\infty} \mathbb{C}P^n \xrightarrow{\Sigma^{\infty} \Psi_m^{(n)}} \Sigma^{\infty} BU \xrightarrow{i} K$ Define the map $\Phi_m^{(n)} : \Sigma^{\infty} \mathbb{C}P^n \to \prod_{i=0}^m K$ as the composite $\Sigma^{\infty} \mathbb{C}P^n \xrightarrow{\Delta} \prod_{i=0}^m \Sigma^{\infty} \mathbb{C}P^n \xrightarrow{\prod_{i=0}^m \Psi_i^{(n)}} \prod_{i=0}^m K$

where Δ is the diagonal map.

Let *A* be an Abelian group. $S^{0}A$ denotes the Moore-spectrum with $\pi_{i}(S^{0}A) = 0$, i < 0, $H^{0}(S^{0}A) = A$ and $H^{j}(S^{0}A) = 0$ for $j \neq 0$.

If X is a spectrum, then we denote $X \wedge S^0 A$ by XA or by X[A].

Definition 3.6

Let, for $m \ge 1$, $R_m : \prod_{i=0}^m K \to \prod_{j=1}^m K \mathbb{Q}$ be the map given by

 $R_m(x_0,...,x_m) = (Dx_1 - D(\psi^p - 1)x_0, Dx_2 - D(\psi^p - p)x_1,..., Dx_m - D(\psi^p - p^{m-1})x_{m-1})$ Here, the short exact sequence $\mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ induces a cofiber sequence

$$\Sigma^{-1}(K\mathbb{Q}/\mathbb{Z}) \xrightarrow{C} K \xrightarrow{D} K\mathbb{Q}$$

and $\psi^{p}: K \to K\mathbb{Q}$ is the stable Adams' operation, [A74], p.99.

Proposition 3.7

The homotopy fibre of R_m , $Fib(R_m)$, is equivalent to the spectrum

$$F_m = K \times \prod_{i=1}^m \Sigma^{-1}(K\mathbb{Q}/\mathbb{Z})$$

Proof:

The map $S_m: F_m \to \prod_{i=0}^m K$ is given by $S_m(x_0, x_1, ..., x_m) = (x_0, C(x_1) + \sigma_1(x_0), C(x_2) + \sigma_2(x_0), ..., C(x_m) + \sigma_m(x_0))$ with $\sigma_n = \prod_{r=0}^{n-1} (\psi^p - p^r)$. It is easily seen that $R_m \circ S_m$ is null homotopic, and we get a lift of S_m to $\overline{S}_m: F_m \to Fib(R_m)$. We want to show that \overline{S}_m is a homotopy equivalence. The cofiber sequence $\Sigma^{-1}(K\mathbb{Q}/\mathbb{Z}) \to K \to K\mathbb{Q}$ shows that

$$\pi_{j}(\Sigma^{-1}K\mathbb{Q}/\mathbb{Z}) = \begin{cases} \mathbb{Q}/\mathbb{Z} & , j \text{ odd} \\ 0 & , j \text{ even} \end{cases}$$

and

$$\pi_{j}(F_{m}) = \begin{cases} \mathbb{Z} & , j \text{ even} \\ (\mathbb{Q}/\mathbb{Z})^{m} & , j \text{ odd} \end{cases}$$

The cofiber sequence

$$Fib(F_m) \to \prod_{i=0}^m K \xrightarrow{R_m} \prod_{i=1}^m K \mathbb{Q}$$

gives the exact sequence

$$0 \to \pi_{2n}(Fib(R_m)) \to \mathbb{Z}^{m+1} \xrightarrow{(R_m)_*} \mathbb{Q}^m \to \pi_{2n-1}(Fib(R_m)) \to 0$$

As $\psi^{p_*}: \mathbb{Z} \cong \pi_{2n}(K) \to \pi_{2n}(K\mathbb{Q}) \cong \mathbb{Q}$ is multiplication with $p^n / p^n = 1$, we see that $(R_m)_*: \mathbb{Z}^{m+1} \to \mathbb{Q}^m$ is given by

$$(R_m)_*(x_0,...,x_m) = (x_1, x_2 + (p-1)x_1,..., x_m + (p^{m-1}-1)x_{m-1})$$

Hence

$$\pi_{j}(Fib(R_{m})) = \begin{cases} \mathbb{Z} & , j \text{ even} \\ (\mathbb{Q}/\mathbb{Z})^{m} & , j \text{ odd} \end{cases}$$

Consider now the diagram

$$F_{m} \xrightarrow{T_{m}} \prod_{i=0}^{m} K \xrightarrow{P_{m}} \prod_{i=1}^{m} K\mathbb{Q}$$

$$\bar{s}_{m} \downarrow \searrow s_{m} \quad U_{m} \downarrow \qquad \qquad \downarrow v_{m}$$

$$Fib(R_{m}) \longrightarrow \prod_{i=0}^{m} K \xrightarrow{R_{m}} \prod_{i=1}^{m} K\mathbb{Q}$$

Here the maps T_m , P_m , U_m and V_m are described as follows:

$$T_{m}(x_{0}, x_{1}, ..., x_{m}) = (x_{0}, C(x_{1}), ..., C(x_{m})),$$

$$P_{m}(x_{0}, x_{1}, ..., x_{m}) = (D(x_{1}), ..., D(x_{m}))$$

$$U_{m}(x_{0}, x_{1}, ..., x_{m}) = (x_{0}, x_{1} + \sigma_{1}(x_{0}), x_{2} + \sigma_{2}(x_{0})..., x_{m} + \sigma_{m}(x_{0}))$$

$$V_{m}(x_{1}, ..., x_{m}) = (x_{1} - (\psi^{p} - 1)x_{0}, x_{2} - (\psi^{p} - p)x_{1}, ..., x_{m} - (\psi^{p} - p^{m-1})x_{m-1})$$

It is easily seen that $S_m = U_m \circ T_m$ and that $V_m \circ P_m = R_m \circ U_m$, and thus the diagram is commutative.

As U_m and V_m induce isomorphisms in homotopy, a 5-lemma argument shows that the lift \overline{S}_m of S_m is a homotopy equivalence.

QED

Proposition 3.8

$$K_*(F_m; \mathbb{Q}) \cong K_*(K; \mathbb{Q})$$
 and $K_*(F_m; \mathbb{Z}/p) \cong \bigoplus_{i=0}^m K_*(K; \mathbb{Z}/p)$.

Proof:

This is evident, as $K_*(\Sigma^{-1}K\mathbb{Q}/\mathbb{Z};\mathbb{Q}) = 0$ and $K_*(K\mathbb{Q};\mathbb{Z}/p) = 0$.

QED

Proposition 3.9

The composite
$$R_m \circ \Phi_m^{(n)} : \Sigma^{\infty} \mathbb{C}P^n \to \prod_{j=1}^m K \mathbb{Q}$$
 is null-homotopic.

Proof:

This follows from the definitions and from (3.1.3).

QED

Definition 3.10

Define the map $R: \bigvee_{i=0}^{\infty} K \longrightarrow \bigvee_{i=0}^{\infty} K \mathbb{Q}$ as the direct limit of the maps

 $R_m : \prod_{i=0}^m K \to \prod_{j=1}^m K \mathbb{Q}$ (It follows from (3.6) that the R_m 's are compatible for varying m).

From (3.5) we see that the composite

$$\Sigma^{\infty} \mathbb{C} P^n \xrightarrow{\Phi_m^{(n)}} \prod_{i=0}^m K \xrightarrow{i} \prod_{i=0}^{m+1} K$$

where the map *i* is the inclusion of the first (m+1) 'st factors, equals

$$\Phi_{m+1}^{(n)}:\Sigma^{\infty}\mathbb{C}P^n\to\prod_{i=0}^{m+1}K$$

We thus get a map $\Phi^{(n)}: \Sigma^{\infty} \mathbb{C}P^n \to \bigvee_{i=0} K$.

Again, (3.5) and (3.4) shows that the composite

$$\Sigma^{\infty} \mathbb{C} P^n \xrightarrow{\Sigma^{\infty} j} \Sigma^{\infty} \mathbb{C} P^{n+1} \xrightarrow{\Phi^{(n+1)}} \bigvee_{i=0}^{\infty} K$$

equals $\Phi^{(n)}: \Sigma^{\infty} \mathbb{C}P^n \to \bigvee_{i=0}^{\infty} K$, where $j: \mathbb{C}P^n \to \mathbb{C}P^{n+1}$ is the inclusion. By taking the limit over *n*, we obtain a map

$$\Phi: \Sigma^{\infty} \mathbb{C} P^{\infty} \to \bigvee_{i=0}^{\infty} K$$

From (3.9) we conclude that $R \circ \Phi$ is null-homotopic, and we get a lift

 $\Phi: \Sigma^{\infty} \mathbb{C}P^{\infty} \to F$, where $F \cong \lim_{i \to \infty} F_m \cong K \vee \bigvee_{i=0} \Sigma^{-1} K \mathbb{Q}/\mathbb{Z}$ denotes the homotopy fibre of the map *R*.

Theorem 3.11

$$\Phi \text{ induces an isomorphism in } K_*(-;\mathbb{Z}/p) \text{ -theory:}$$
$$\Phi_*: K_*(\Sigma^{\infty} \mathbb{C}P^{\infty};\mathbb{Z}/p) \xrightarrow{\cong} K_*(F;\mathbb{Z}/p)$$

Proof:

As $K_1(-;\mathbb{Z}/p)$ of both spectra vanishes, Bott periodicity shows that it suffices to consider the induced map Φ_* in $K_0(-;\mathbb{Z}/p)$ -theory.

We calculate the action of the *n*'th factor map $\Psi_n : \Sigma^{\infty} \mathbb{C}P^{\infty} \to K$. We have that $\Psi_n^*(\xi) = \Psi_n^*(H-1) = \Psi_n^*(H) - \Psi_n^*(1) = f_n(H) - f_n(1) = f_n(H)$

As
$$p \equiv 0 \pmod{p}$$
, (3.1.3) shows that $f_{n+1}(x) \equiv f_n(x^p) \equiv x^{p^{n+1}} - 1 \pmod{p}$. Thus

$$\Psi_n^*(\xi) = f_n(H) \equiv H^{p^n} - 1 \equiv (H - 1)^{p^n} = x^{p^n} = (\mu_{p^n})^*(\xi) .$$

From this we conclude that

$$(\Psi_n)_* = i_* \circ (\mu_{p^n})_*$$

with μ_{p^n} from (1.6).

Now we show that Φ_* is injective. Assume that $x = \sum_{n=1}^{N} a_n \beta_n$ is contained in Ker Φ_* .

Then $\Psi_{0^*}(x) = i_*(x) = 0$, so $x = \sum_{n=1}^{N_1} a_n^{(1)} \cdot \gamma_n^{(1)}$ with $N_1 \le N / p$. Next, $\Psi_{1^*}(x) = i_* \circ \mu_{p^{n_*}}(x) = 0$, and so $x = \sum_{i=1}^{N_2} a_i^{(2)} \gamma_i^{(2)}$ with $N_2 \le N_1 / p \le N / p^2$.

Repeating this argument, the injectivity follows.

In order to show that Φ_* is surjective, let $(y_0, y_1, ..., y_N, 0, 0, ...)$ be an element of $K_0(F; \mathbb{Z}/p) = \bigoplus_{i=0}^{\infty} K_0(K; \mathbb{Z}/p)$. Inductively we construct a sequence $x_0, x_1, ...$ of elements of $K_0(\Sigma^{\infty} \mathbb{C}P^{\infty}; \mathbb{Z}/p)$ such that $\Phi_*(x_i) = (y_0, y_1, ..., y_{i-1}, y_i, 0, 0, ...)$. As $y_i = 0$ for j > N, this process terminates after a finite number of steps, and we conclude that Φ_* is surjective.

First, $i_* = \psi_{0*}$ is surjective, so there exists $x_0^{(0)} \in K_0(\Sigma^{\infty} \mathbb{C}P^{\infty}; \mathbb{Z}/p)$ with

 $\Psi_{0*}(x_0^{(0)}) = y_0$. Write $x_0^{(0)} = \sum_{j=0}^N a_j \beta_j$

We adjust $x_0^{(0)}$ with elements from Ker $\Psi_{0*} = span(\{\gamma_n^{(1)}\})$. Let $x_0^{(1)} = x_0^{(0)} + v$, where $v \in \text{Ker } \Psi_{0*}$ satisfies the condition that $\Psi_{1*}(v) = -\Psi_{1*}(x_0^{(0)})$ – this is possible, as $\Psi_{1*} = i_* \circ \mu_{p^*}|_{span\{\gamma_m^{(1)}\}}$ is surjective. Furthermore, as $x_0^{(0)}$ is of 'degree' *N* in the β_i 's, *v* is of 'degree' at most N/p in the $\gamma_i^{(1)}$'s.

Inductively, we kill off the elements $\Psi_{m^*}(x_0^{(m-1)})$ with linear combinations of the $\gamma_i^{(m)}$'s. Each adjustment is of 'degree' at most N/p^m , and so this process terminates after a finite number of steps. Thus, x_0 is defined to be $x_0^{(m)}$ for $m > \log_p(N)$.

Similarly, we can construct $x_1, x_2, ...$, and we conclude that Φ_* is surjective.

QED

Corollary 3.12

The map $\Phi: \Sigma^{\infty} \mathbb{C}P^{\infty} \to F$ is a $K_*(-;\hat{\mathbb{Z}}_p)$ -equivalence. **Proof:** By using the Bockstein sequences in *K*-homology associated to the coefficient sequences

$$0 \to \mathbb{Z}/p^{n-1} \to \mathbb{Z}/p^n \to \mathbb{Z}/p \to 0$$

we inductively see that Φ is a $K_*(-;\mathbb{Z}/p^n)$ -equivalence. By taking the limit, we obtain the result.

QED

We now turn to the rational type of $\Sigma^{\infty} \mathbb{C}P^{\infty}$. In [S72], it is shown that the map $i: Q(\mathbb{C}P^{\infty}) \to BU \times \mathbb{Z}$ (which Segal denotes by *T*), splits $Q(\mathbb{C}P^{\infty})$ as $(BU \times \mathbb{Z}) \times C$, where the space *C* has finite homotopy groups. Translating this into a statement about spectra, we have

Proposition 3.13

The map $i: \Sigma^{\infty} \mathbb{C}P^{\infty} \to K < 0, \infty >= bu$ is a rational equivalence.

Definition 3.14

Define $r: K \to \prod_{i=-\infty}^{-1} \Sigma^{2i} S^0 \mathbb{Q}$ as follows: It is well known, that $K\mathbb{Q} \simeq \prod_{i=-\infty}^{\infty} \Sigma^{2i} S^0 \mathbb{Q}$

We let *r* be the composite $K \xrightarrow{D} K \mathbb{Q} \xrightarrow{\pi} \prod_{i=-\infty}^{-1} \Sigma^{2i} S^0 \mathbb{Q}$, where we use the map *D* of (3.6), and where π is the projection onto the factors $\Sigma^{2i} S^0 \mathbb{Q}$ with $i \leq -1$.

Let \overline{bu} denote the homotopy fibre of *r*, and note that the natural map $bu \to K$, factors through \overline{bu} , as $\pi_i(bu) = 0$ for i < 0.

Proposition 3.15

The K-localization of bu is \overline{bu} .

Proof:

 \overline{bu} is obviously *K*-local, as both *K* and $\prod_{i=-\infty}^{-1} \Sigma^{2i} S^0 \mathbb{Q}$ are *K*-local. (Every rational spectrum is *K*-local, as it follows from the remark preceding thm. (2.2) in [Mi]).

We have to show that the map $f:bu \to \overline{bu}$ is a *K*-equivalence. Let *W* denote the homotopy fibre of *f*. We need to show that $K_*(W) = 0$.

Let W_n denote the *n*-connected cover of *W*. We have the sequence of maps $0 = W_1 \rightarrow W_0 \rightarrow W_{-1} \rightarrow W_{-2} \rightarrow \dots$ and $W = \varinjlim W_{-n}$. As $K_*(W) = \varinjlim K_*(W_{-n})$, it suffices to show that $K_*(W_{-n}) = 0$.

This is done inductively: For n < 0, W_{-n} is the zero spectrum. We obtain W_{-n} from W_{-n+1} via the cofiber sequence

 $W_{-n+1} \rightarrow W_{-n} \rightarrow H(\pi_{-n}(W); -n)$

where $H(\pi_{-n}(W); -n)$ is the Eilenberg-MacLane spectrum with the sole non-zero homotopy group

 $\pi_{-n}(H(\pi_{-n}(W);-n)) = \pi_{-n}(W)$

 $\pi_{-n}(W)$ is either zero or \mathbb{Q}/\mathbb{Z} , depending on whether *n* is even or odd. In both cases, $\pi_{-n}(W)$ is a torsion group, and $K_*(H(\pi_{-n}(W); -n)) = 0$, as it follows from [AH], thm. I. Inductively we see that $K_*(W_{-n}) = 0$.

QED

Definition 3.16

Let \overline{F} be the homotopy fibre of the map

$$F = K \vee \bigvee_{i=1}^{\infty} \Sigma^{-1} K \mathbb{Q} / \mathbb{Z} \to \prod_{i=-\infty}^{-1} \Sigma^{2i} S^0 \mathbb{Q}$$

which is the map r of (3.14) on the first component, and zero on all the other components. We have immediately that

$$\overline{F} = \overline{bu} \vee \bigvee_{i=1}^{\infty} \Sigma^{-1} K \mathbb{Q} / \mathbb{Z}$$

Theorem 3.17

The $K\mathbb{Z}_{(p)}$ -localization of $\Sigma^{\infty}\mathbb{C}P^{\infty}$ is the spectrum $\overline{F} = \overline{bu} \vee \bigvee_{i=1} \Sigma^{-1} K\mathbb{Q}/\mathbb{Z}$

Proof:

This follows immediately from the rational statements (3.13) and (3.15), and from (3.12). Observe that the constituents of \overline{F} are all *K*-local spectra.

QED

We wish to calculate the K-localization of the infinite loop space $Q(\mathbb{C}P^{\infty})$. We use

Proposition 3.18 ([B82], (3.1))

Let *X* be a connective spectrum. Then there are natural isomorphisms

 $\pi_i(L_K\Omega^{\infty}X) \cong \pi_i(L_KX)$, i > 2

 $\pi_i(L_{\kappa}\Omega^{\infty}X) \cong \pi_i(X) \ , \ i < 2$

and a natural short sequence:

 $0 \to \operatorname{tors}(\pi_2(L_K X)) \to \pi_2(L_K \Omega^{\infty} X) \to \pi_2(X) / \operatorname{tors}(\pi_2(X)) \to 0.$

Theorem 3.19

The $K\mathbb{Z}_{(p)}$ -localization of the space $Q(\mathbb{C}P^{\infty})$ is

 $BU \times \mathbb{Z} \times \prod_{i=1}^{\infty} \Omega BU[\mathbb{Q}/\mathbb{Z}] < 2, \infty >$

where $\Omega BU[\mathbb{Q}/\mathbb{Z}]$ is the zero'th space in the Ω -spectrum $\Sigma^{-1}K\mathbb{Q}/\mathbb{Z}$.

Proof:

Making $\Sigma^{\infty} \mathbb{C}P^{\infty}$ into an Ω -spectrum and taking the corresponding infinite loop

space map, we get $\Omega^{\infty} \Phi : Q(\mathbb{C}P^{\infty}) \to BU \times \mathbb{Z} \times \prod_{i=1}^{\infty} \Omega BU[\mathbb{Q}/\mathbb{Z}]$, and as the latter space is

K-local, we get a map $L_K \Omega^{\infty} \Phi : L_K Q(\mathbb{C}P^{\infty}) \to BU \times \mathbb{Z} \times \prod_{i=1}^{\infty} \Omega BU[\mathbb{Q}/\mathbb{Z}].$

(3.18) shows that this map is a homotopy equivalence in all dimensions except possibly 1 and 2.

We have that $\pi_2(\Sigma^{\infty}\mathbb{C}P^{\infty})\cong\mathbb{Z}$, and that

$$\pi_2(L_K\Sigma^{\infty}\mathbb{C}P^{\infty}) = \pi_2(\overline{bu}) \oplus \bigoplus_{i=1}^{\infty} \pi_2(\Sigma^{-1}K\mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z} \oplus \bigoplus_{i=1}^{\infty} 0 \cong \mathbb{Z}$$

(3.18) shows that $\pi_2(L_K Q(\mathbb{C}P^{\infty})) \cong \mathbb{Z}$, and we conclude that $L_K \Omega^{\infty} \Phi$ gives an equivalence in homotopy in dimension 2.

By killing off the π_1 's of $\Omega BU[\mathbb{Q}/\mathbb{Z}]$ ($\pi_1(\Omega BU[\mathbb{Q}/\mathbb{Z}]) \cong \mathbb{Q}/\mathbb{Z}$), we get the result. QED

4. The *K*-localization of $\Sigma^{\infty}BG$ and $Q(BG_{+})$

We now calculate the *K*-localization of the suspension spectrum of the space *BG* and of the corresponding infinite loop space $Q(BG_+)$, where $G = \mathbb{Z}/p^n$ is a cyclic *p*-group. *p* is all odd prime. As in §2 we select a prime *l*, such that $l + p^2\mathbb{Z}$ generates the unit group $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$.

We start, by studying the spectrum $K(\mathbb{F}_{l}[G])$ – algebraic *K*-theory of the group ring $\mathbb{F}_{l}[G]$. This spectrum is defined by using an infinite loop space machine, e.g. [S74], on the category $\mathcal{GL}(\mathbb{F}_{l}[G])$ of all projective $\mathbb{F}_{l}[G]$ -modules and $\mathbb{F}_{l}[G]$ -isomorphisms; the group-law is the direct sum. This construction insures that $\pi_{0}(K(\mathbb{F}_{l}[G]))$ is isomorphic to $R_{\mathbb{F}}(G)$ – the Grothendieck group of projective $\mathbb{F}_{l}[G]$ -modules.

Proposition 4.1

The spectrum $K(\mathbb{F}_{l}[G])$ splits as $\prod_{i=0}^{n} K(\mathbb{F}_{l_{i}})$, where $g = |G| = p^{n}$, $l_{0} = l$, and $l_{i} = l^{p^{i}} - l^{p^{i-1}}$ for i > 0.

Proof:

The group ring $\mathbb{F}_{l}[G]$ is semi-simple, as (l, p) = 1, and

 $\mathbb{F}_{l}[G] \cong \mathbb{F}_{l_{0}} \times \mathbb{F}_{l_{1}} \times \ldots \times \mathbb{F}_{l_{n}}$

Indeed, the factor group \mathbb{Z}/p^i of *G* has an irreducible representation over \mathbb{F}_l of dimension $p^i - p^{i-1}$, as the finite field \mathbb{F}_{l_i} has a p^i 'th root of unity. This representation induces an irreducible representation *V* of *G* of the same dimension, giving the factor $\operatorname{Hom}_G(V,V) \cong \mathbb{F}_{l_i}$

Corollary 4.2

 $K_0(K(\mathbb{F}_l[G]);\mathbb{Z}/p)$ is a free \mathbb{Z}/p -module on p^n generators. $K_1(K(\mathbb{F}_l[G]);\mathbb{Z}/p) = 0$.

Proof:

This follows immediately from (4.1) and (2.7).

QED

QED

Definition 4.3

Let *G* be a finite group. Define \mathcal{T}_G to be the topological category, whose objects are the *G*-sets of the form n(G/1), $n \ge 0$, and whose morphisms are *G*-bijections. The topologies on the object set and on each morphism set are thle discrete topologies. We equip \mathcal{T}_G with the composition $\coprod -$ disjoint union of sets.

The group completion $\Omega B(BT_G)$ is an infinite loop space, cf. [S74], and in fact

<u>Lemma 4.4</u>

The infinite loop space $\Omega B(BT_G)$ corresponding to T_G is $Q(BG_+)$.

Proof:

We have immediately that $\operatorname{Hom}_{\mathcal{T}_G}(n(G/1), n(G/1)) \cong \sum_n \int G$ as a topological group. Thus, $\Omega B(B\mathcal{T}_G) \simeq \Omega B(\coprod_{n \ge 0} B(\sum_n \int G).$

We have the 'Dyer-Lashof-equivalence' (cf. [MM], p.49): $Q(X) \simeq \Omega B((\coprod_{n \ge 0} E\Sigma_n \times_{\Sigma_n} X^n) / \approx),$

where Σ_n acts on X^n by permuting the coordinates. The equivalence relation \approx identifies points of $E\Sigma_{n-1} \times_{\Sigma_{n-1}} X^{n-1}$ with the subspace F_n of $E\Sigma_n \times_{\Sigma_n} X^n$ given by

 $F_n = \{ (e; x_1, x_2, ..., x_n) \in E\Sigma_n \times_{\Sigma_n} X^n \mid \exists j : x_j = * \}.$

Here * is the basepoint of *X*.

Since $E\Sigma_n \times_{\Sigma_n} (BG_+)^n = E\Sigma_n \times_{\Sigma_n} (BG)^n \coprod F_n$, and $E\Sigma_n \times_{\Sigma_n} (BG)^n \simeq B(\Sigma_n \int G)$, we get the result.

QED

The functor $\mathcal{T}_G \to \mathcal{GL}(\mathbb{F}_l[G])$ which sends the *G*-set n(G/1) to its permutation representation $\mathbb{F}_l[G]^n$ is a map of permutative categories, so we get an infinite loop map $e: Q(BG_+) \to K(\mathbb{F}_l[G])$. We also denote by *e* the associated morphism between spectra

(4.5) $e: \Sigma^{\infty}(BG_+) \to K(\mathbb{F}_{l}[G]) e: W(BG_{l}) K(IFt[GI).$

We furthermore use the splitting of spectra

(4.6)
$$\Sigma^{\infty}(BG_{+}) \cong \Sigma^{\infty}BG \vee S^{0},$$

where S^0 is the sphere spectrum, to define the map

(4.7) $\overline{e}: \Sigma^{\infty} BG \to K(\mathbb{F}_{l}[G]),$

as the composite $\Sigma^{\infty}BG \longrightarrow \Sigma^{\infty}(BG_{+}) \xrightarrow{e} K(\mathbb{F}_{l}[G])$.

Theorem 4.8

 $\overline{e}: \Sigma^{\infty}BG \to K(\mathbb{F}_{l}[G])$ gives an equivalence in $K_{*}(-;\mathbb{Z}/p)$ -theory.

Proof:

From (1.8) and (4.2) we know that $K_*(\Sigma^{\infty}BG;\mathbb{Z}/p)$ and $K_*(K(\mathbb{F}_{l}[G]);\mathbb{Z}/p)$ are abstractly isomorphic. We construct a commutative diagram

$$(4.9) \qquad \begin{array}{ccc} \Sigma^{\infty}BG & \stackrel{\overline{e}}{\longrightarrow} & K(\mathbb{F}_{l}[G]) \\ & \downarrow_{\Sigma^{\infty}B\chi} & & \downarrow_{A} \\ & \Sigma^{\infty}\mathbb{C}P^{\infty} & \stackrel{\Phi}{\longrightarrow} & L_{K}(\Sigma^{\infty}\mathbb{C}P^{\infty}) \end{array}$$

and show that the images if $\Phi \circ \Sigma^{\infty} B\chi$ and of *A* in $K_*(L_K(\Sigma^{\infty} \mathbb{C}P^{\infty}); \mathbb{Z}/p)$ are the same. As furthermore $\Phi \circ \Sigma^{\infty} B\chi$ and *A* give monomorphisms in $K_*(-; \mathbb{Z}/p)$ -theory, we conclude that \overline{e} is a $K_*(-; \mathbb{Z}/p)$ -equivalence.

 $\Sigma^{\infty} B\chi$ comes from the map $\chi: G \to S^1$ of (1.8), while Φ is defined in (3.10). *A* is the product of maps $A_j: K(\mathbb{F}_{l_j}) \to K$, where we observe the splittings (3.10) and (4.1). (As we work with \mathbb{Z}/p -coefficients, it doesn't matter whether we use *K* or $\Sigma^{-1}K\mathbb{Q}/\mathbb{Z}$, as $K \wedge S^0\mathbb{Z}/p \cong \Sigma^{-1}K\mathbb{Q}/\mathbb{Z} \wedge S^0\mathbb{Z}/p$). A_j is the 'Brauer lift' map of (2.6), and A_j goes into

the n-j'th component of $L_K(\Sigma^{\infty}\mathbb{C}P^{\infty}) = \bigvee_{s=0} K$.

To show that (4.9) commutes, it suffices to show the commutativity of

$$(4.10) \begin{array}{ccc} \Sigma^{\infty}BG & \stackrel{\overline{e}}{\rightarrow} K(\mathbb{F}_{l}[G]) \stackrel{\pi}{\rightarrow} & K(\mathbb{F}_{l}) \\ \downarrow \Sigma^{\infty}_{B\chi} & & \downarrow_{A_{j}} \\ \Sigma^{\infty}\mathbb{C}P^{\infty} & \stackrel{i \circ \mu_{p^{n-j}}}{\longrightarrow} & L_{K}(\Sigma^{\infty}\mathbb{C}P^{\infty}) \end{array}$$

We thus have two elements $i \circ \mu_{p^{n-j}} \circ \Sigma^{\infty} B\chi$ and $A_j \circ \pi \circ \overline{e}$ of $[\Sigma^{\infty} BG, K]_* = K^*(BG)$. According to the Atiyah completion theorem, [A61], (7.2), $K^*(BG) = R(G)_p^{\wedge}$. Both $i \circ \mu_{p^{n-j}} \circ \Sigma^{\infty} B\chi$ and $A_j \circ \pi \circ \overline{e}$ corresponds to elements in $R(G) : \chi$ – the standard character of *G* sending $1 + p^n \mathbb{Z}$ to $\exp(2\pi i/p^n)$ – gives, after raising it to the p^{n-j} 'th power, the character sending $1 + p^n \mathbb{Z}$ to $\exp(2\pi i/p^j)$. And the Brauer lift of the irreducible representation of *G* into \mathbb{F}_{l_j} is easily seen to be the same character. We thus have established the commutativity of (4.9).

Now, the images of $i \circ \mu_{p^{n-j}} \circ \Sigma^{\infty} B \chi$ and of A_j in $K_*(-;\mathbb{Z}/p)$ -theory are clearly the same, namely $i_*(<\beta_0,\beta_1,...,\beta_{p^{n-j}}>)$.

QED

We are now able to calculate $L_{K}(\Sigma^{\infty}BG)$:

Definition 4.11

Let *q* be a prime power. Let \mathcal{J}_q be the fibre of $\psi^q - 1: K \to K$. Let $a: K(\mathbb{F}_q) \to \mathcal{J}_q$ be the map obtained from the diagram

$K(\mathbb{F}_q)$	\longrightarrow	$K < 0, \infty >$	$\xrightarrow{\psi^q - 1} \rightarrow$	$K < 2, \infty >$
$a \downarrow$		\downarrow		\downarrow
${\cal J}_q$	\longrightarrow	K	$\xrightarrow{\psi^q - 1}$ \rightarrow	K

Proposition 4.12

 $a: K(\mathbb{F}_q) \to \mathcal{J}_q$ is a $K_*(-;\mathbb{Z}/p)$ -equivalence.

Proof:

The proof is analogous to that of (3.15), the main point being that $K(H(\pi_{-}(E))) = K(H(\pi_{-}(E) \otimes \pi_{-}(E)) \otimes \pi_{-}(E) \otimes \pi_{-}(E$

$$\pi_*(H(\pi_{-n}(F);-);\mathbb{Z}/p) = K_*(H(\pi_{-n}(F)\otimes_{\mathbb{Z}}\mathbb{Z}/p;-n)) = 0$$

where *F* denotes the homotopy fibre of the map $a: K(\mathbb{F}_q) \to \mathcal{J}_q$.

QED

Proposition 4.13

Let *q* be a prime power. Let, as in [B79], p.269, $\overline{\mathcal{J}}_q$ be the homotopy fibre of the map $k: \mathcal{J}_q \to H(\mathbb{Q}, -1) = \Sigma^{-1}M\mathbb{Q}$, inducing the map $\mathbb{Z} \to \mathbb{Q}$ in $\pi_{-1}(-)$ (recall that the Hurewicz map $H: H_{-1}(-;\mathbb{Q}) \to \pi_{-1}(-;\mathbb{Q})$ is an isomorphism, as it follows from Serre theory). Then the K-localization of $K(\mathbb{F}_q)$ is $\overline{\mathcal{J}}_q$.

Proof:

As $\pi_{-1}(K(\mathbb{F}_q)) = 0$, we get a lift of the map *a* of (4.10) to $\overline{a} : K(\mathbb{F}_q) \to \overline{\mathcal{J}}_q$. (4.11) implies that \overline{a} is a $K_*(-;\mathbb{Z}/p)$ -equivalence.

The only non-zero $K_*(-;\mathbb{Q})$ -homology groups of both $K(\mathbb{F}_q)$ and $\overline{\mathcal{J}}_q$ reside in dimension zero and are isomorphic to \mathbb{Q} . The map \overline{a} is seen to be a $K_*(-;\mathbb{Q})$ -equivalence, and the result follows.

QED

Definition 4.14

Define $\mathcal{K}(\mathbb{F}_{l}[G])$ as the *K*-local spectrum $\prod_{i=0}^{n} \mathcal{J}_{l_{i}}$. Define the *K*-local spectrum

 $\Sigma^{-1}\mathcal{K}(\mathbb{F}_{l}[G])[\mathbb{Q}/\mathbb{Z}]$ as the homotopy fibre of the rationalization map $\mathcal{K}(\mathbb{F}_{l}[G]) \to \mathcal{K}(\mathbb{F}_{l}[G])\mathbb{Q}$

As a corollary to (4.12) we have

Corollary 4.15

The map
$$A = \prod_{i=0}^{n} a : K(\mathbb{F}_{l}[G]) = \prod_{i=0}^{n} K(\mathbb{F}_{l_{i}}) \to \prod_{i=0}^{n} \mathcal{J}_{l_{i}} = \mathcal{K}(\mathbb{F}_{l}[G])$$
 is a $K_{*}(-;\mathbb{Z}/p)$ -

equivalence.

Theorem 4.16

The *K*-localization of $\Sigma^{\infty} BG$ is $\Sigma^{-1} \mathcal{K}(\mathbb{F}_{l}[G])[\mathbb{Q}/\mathbb{Z}]$

Proof:

The composite

 $\Sigma^{\infty}BG \xrightarrow{\overline{e}} K(\mathbb{F}_{l}[G]) \xrightarrow{\mathcal{A}} \mathcal{K}(\mathbb{F}_{l}[G])$

factors through $e': \Sigma^{\infty}BG \to \Sigma^{-1}\mathcal{K}(\mathbb{F}_{l}[G])[\mathbb{Q}/\mathbb{Z}]$, as the homotopy groups of $\Sigma^{\infty}BG$ are finite.

It follows from (4.8) and (4.15) that *e*' is a $K_*(-;\mathbb{Z}/p)$ -equivalence, and as both $\Sigma^{\infty}BG$ and $\Sigma^{-1}\mathcal{K}(\mathbb{F}_{l}[G])[\mathbb{Q}/\mathbb{Z}]$ vanish rationally, the theorem follows.

QED

By using the splitting (4.6) and the fact that $L_K S^0 = \overline{\mathcal{J}}_1$, [H79], p.269, we get

Corollary 4.17

$$L_{K}(\Sigma^{\infty}BG_{+}) \simeq \overline{\mathcal{J}}_{1} \vee \Sigma^{-1}\mathcal{K}(\mathbb{F}_{l}[G])(\mathbb{Q}/\mathbb{Z}) \simeq \overline{\mathcal{J}}_{1} \vee \bigvee_{i=0}^{n} \Sigma^{-1}\mathcal{J}_{l_{i}}[\mathbb{Q}/\mathbb{Z}]$$

And from (3.18) we finally get:

Theorem 4.18

- (1) The *K*-localization of the space Q(BG) is $\Sigma K(\mathbb{F}_{l}[G])(\mathbb{Q}/\mathbb{Z})$ the zero'th space of the Ω -Spectrum $\Sigma^{-1}\mathcal{K}(\mathbb{F}_{l}[G])[\mathbb{Q}/\mathbb{Z}]$.
- (2) The *K*-localization of the space $Q(BG_+)$ is $K(\mathbb{F}_l) \times \Omega K(\mathbb{F}_l[G])(\mathbb{Q}/\mathbb{Z})$.

References

- [A62] J. F. Adams: Vector Fields on Spheres. Ann.Math. **75** (1962), 603-632.
- [A74] J.F. Adams: Stable homotopy and generalised homology. University of Chicago Press, 1974.
- [AH] D. W. Anderson, L.Hodgkin: The K-theory of Eilenberg-MacLane complexes. Topology **7** (1968),317 329.
- [Ap] T. M. Apostol: Introduction to Analytic Number Theory. Springer, 1984.
- [A61] M. F. Atiyah: Characters and cohomology of finite groups. INES 9, (1961), 23-64.
- [B79] A. K. Bousfield: The localization of spectra with respect to homology. Topology **18** (1979), 257-281.
- [B82] A.K.Bousfield: K-localizations and K-equivalences of infinite loop spaces. Proc.London.Math.Soc. 44 (1982) 291-311.
- [Ch] A. Chabour: Sur la structure de groupe de la K-theorie des espaces lenticulaires. C. R. Acad. Sc. Paris, **272A** (1971) 462-464.
- [FP] Z. Fiedorowicz, S. Priddy: Homology of Classical Groups over Finite Fields and Their Associated Infinite Loop Spaces. Springer, LNM 674.
- [MM] I. Madsen and R. J. Milgram: The Classifying Spaces for Surgery and Cobordism of Manifolds. Princeton University Press, 1979.
- [Mi] G. Mislin: Localization with respect to K-theory. J. Pure Appl. Alg. *10* (1977), p. 201-213.
- [R] D.C.Ravenel: Localization with respect to certain periodic homology theories. Amer. J. Math., **106**, (1984), 351-414.
- [S72] G.Segal: The Stable Homotopy of Complex Projective Space. Quart. J. Math. Oxford **24** (1972), 1-5.
- [S74] G.Segal: Categories and Cohomology Theories. Topology, **13** (1974), 293-312.
- [Y] Yosimura, Z. I.: Universal coeffecient sequence for cohomology theories for CW complexes. Osaka.J.Math., **12**, (1975), 305-323.