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 The purpose of this paper is two-fold: To study oriented G-bundles and the 
corresponding K-theory, and to generalize the p-local splittings 

   / CokF O BSO J×�  and    CokSF J J×�  

of Sullivan to the equivariant case. 
 This paper is divided into 5 parts. We start by recapitulating some essential facts 
about complex and real GK -theory, and we study their classifying spaces. 
 In section 2 we introduce G-SO-bundles and G-Spin-bundles, and we find a 
connection between these and the 'equivariant Stiefel-Whitney-classes'. 
 In section 3 we study the space GBSO  in detail, at least when G is of odd order. 
Results about the λ-ring-structure on GBSO  of Atiyah-Tall and Atiyah-Segal are 
generalized – here it is necessary to assume that G is a p-group, where p is an odd 
prime, and that we are in the p-local situation. 
 In section 4 we study the space GSF  using the equivariant Adams' conjecture, 
and finally in section 5 we define the e-invariant and prove the Sullivan splittings. 
 
 Throughout the paper G is assumed to be finite. All G-Spaces are assumed to 
have a basepoint fixed under the G-action, and normally we consider only 
G-CW-complexes, which are finite and G-connected. 
 
 I would like to thank Ib Madsen, Jørgen Tornehave and Marcel Bökstedt for 
many enlightening discussions. 
 
 
 
1. Preliminary remarks about GK - and GKO -theory 
 
 In this section we briefly describe the functors ( )GK −  and ( )GKO −  and the 
corresponding classifying spaces. 
 
 ( )GK X  is defined in [S68], p.132, as the Grothendieck group of the additive 
semigroup of complex G-bundles over the G-CW-complex X. The tensor-product of 
G-bundles gives a multiplication on ( )GK X , and ( )GK X  becomes a commutative 
ring. Similarly, we have the ring ( )GKO X , obtained by using real rather than 
complex G-bundles. 
 ( )GK X is the reduced version of ( )GK X . It is defined as the subgroup of ( )GK X  
generated by differences E F−  of complex G-bundles, such that for every x X∈ , the 
fibres xE  and xF  over x are equivalent xGC -modules. Here { | }xG g G gx x= ∈ =  is 
the isotropy group. 
 We define ( )GKO X , the reduced version of ( )GKO X , in the same way. 
 
 
Remark 1.1 
 If X is a G-connected G-CW-complex, i.e. for every subgroup H of G the fixed 
point space HX  is connected, then it follows from the local triviality condition of [L], 



Oriented, equivariant K-theory and the Sullivan splittings 
Kenneth Hansen 

 
 

3 

p. 258, that the difference E F−  of G-bundles over X is in ( )GK X  if and only if the 
fibres *E  and *F  over the basepoint * are isomorphic G-modules. 
 
 
 By using an equivariant version of Brown's representation theorem, cf. [LMS], 
(1.5.11), we see that the functors ( )GK −  and ( )GKO −  are representable. We denote 
the classifying spaces by GBU  and GBO , respectively. 
 
 
Proposition 1.2 
 Let 1,..., mU U  be a complete set of inequivalent, irreducible complex 
representations of G. Then 

  
1

( )
m

G
G

i

BU BU
=
∏�  

 
Proof: 
 From [S68], (2.2), we recall the isomorphism 
 
(1.3) : ( ) ( ) ( )GR G K X K Xμ ⊗ →  
 
where X is a trivial G-Space. As ( ) [ , ] [ , ]G G

G G GK X X BU X BU≅ ≅ , and ( )R G  is a 
free Z -module generated by 1,..., mU U , the reduced version of this isomorphism 

(1.4) : ( ) ( ) ( )GR G K X K Xμ ⊗ →  

would imply the result. 
 μ maps ( ) ( )R G K X⊗  into ( )GK X : Let E and F be bundles over X with 

( )E F K X− ∈ . Then the fibres xE  and xF  for every x X∈  have the same dimension. 
If V is a complex G-representation, then ( ( ))V E Fμ ⊗ −  is contained in ( )GK X , as 
the fibres xV E⊗  and xV F⊗  over x are isomorphic GC -modules. 
 On the other hand, ( ( ) ( )) ( )GR G K X K Xμ ⊗ = : Let  ( )GK Xξ∈ . In virtue of 

(1.3) we can find elements 1, ... , mζ ζ  in ( )K X , such that 
1

m

i i
i

U
=

ξ = ⊗ ζ∑ . The fibre of 

the virtual G-bundle ξ over x is then, as an element of ( )R G , given by   

  
0 0

( )
m m

x i i x i i
i i

U d U
= =

ξ = ⊗ ζ = ⋅∑ ∑  

where id  is the complex dimension of ( )i xζ . As ( )GK Xξ∈ , xξ vanishes as an 
element of ( )R G , and we conclude that the id 's are zero. Thus, the iζ 's are contained 
in ( )K X , and (1.4) follows. 

QED 
 
In the real case we have the following: 
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Proposition 1.5 
 Let 1 2, , ..., kU U U  be GR -modules, 1 2, , ... , mV V V  be GC -modules, and 

1 2, , ... , nW W W  be GH -modules, such that (2.6) in [K] is satisfied. Then 

  
1 1 1

k m n
G

G
x y z

BO BO BU BSp
= = =

× ×∏ ∏ ∏�  

Proof: 
 The proof is analogous to that of (1.2) and uses as input, the isomorphism 

(1.6) 
1 1 1

: ( ) ( ) ( ) ( )
k m n

Gx y z
KO X K X KSp X KO X

= = =
Φ ⊕ ⊕ →⊕ ⊕ ⊕    

of [K] (5.1). Here X is assumed to be a trivial G-space. 
QED 

 
 
 Direct sum of vector-bundles makes ( )GK −  and ( )GKO −  into Abelian groups, 
and we thus get an 'additive' G-Hopf-space structures on GBU  and GBO . 
(G-Hopf-spaces are defined in [Br], p.II.10.) We denote GBU  and GBO  with this 
'additive' structure by GBU ⊕   and GBO ⊕ . 
 It is also possible to define 'multiplicative' G-Hopf-structures on GBU  and GBO . 

For a finite G-CW-complex X we consider the sets 1 ( )GK X+  and 1 ( )GKO X+ . As 

every element in ( )GK X  and ( )GKO X  is nilpotent, cf. [S68], (5.1), the tensor-

product makes  1 ( )GK X+  and 1 ( )GKO X+  into Abelian groups. By invoking 
Brown's representation theorem we get the representing G-Hopf-spaces GBU ⊗  and 

GBO ⊗ . 
 The map   ( ) 1 ( ) : 1G GK X K X x x→ + +6   is a bijection for every 
G-CW-complex X, and it follows that GBU ⊕  and GBU ⊗  are G-homotopy-equivalent 
G-Spaces. Similarly we see that GBO ⊕ and GBO ⊗  are equivalent G-spaces. 
 
 
 For later use we need the following: 
 
 
Proposition 1.7 
 Let X be a G-Space. If E is a complex G-bundle over X, then there exists a 

GC -module M and a complex G-bundle E⊥  such that E E⊥⊕ ≅ M  (where M 
denotes the trivial G-bundle M X X× ↓ ). 
 Similarly, if F is a real G-bundle, then there is an GR -module N and a real 
G-bundle F ⊥  such that F F ⊥⊕ ≅ N . 
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Proof: 
 The complex case is (2.4) in [S68]. 
 In the real case we do the following: F ⊗R C  is a complex G-bundle, and we can 
thus find a complex G-bundle 1F , such that 1( )F F⊗ ⊕ ≅R C M , where M is a 

GC -module. Now, F is a direct summand of the underlying real G-bundle 
( )r F ⊗R C  of F ⊗R C  with orthogonal complement 2F . By taking underlying real 

G-bundles, we obtain the relation   

  1 2( ( ) )F r F F⊕ ⊕ ≅ r M( ) .   

Let 1 2( )F r F F⊥ = ⊕ , and ( )N r M=  
QED 

 
 
2. G-SO- and G-Spin-bundles 
 
 In this section we introduce G-SO-bundles and G-Spin-bundles, and we relate the 
classifying spaces of the functors ( )GKSO − and ( )GKSpin −  to GBO . We start by 
defining the G-spaces GBSO  and GBSpin  as the G-1-connected and G-2-connected 
cover of GBO , respectively: 
 
 Recall that if 1n >  and X is a ( 1)n − -connected space with ( )n Xπ Abelian, then 
there is a map : ( ( ), )n nk X H X n→ π , unique up to homotopy, such that ( )n nkπ  is the 
identity map on ( )n Xπ . Here ( , )H A n  denotes the Eilenberg MacLane-space 
normally known as ( , )K A n . 
 In the equivariant case we assume that X is a G- ( 1)n − -connected 
G-CW-complex, i.e. for every subgroup H of G we have that the fixed point space 

HX  is ( 1)n − -connected. We want to define a G-map : ( ( ), )n G nk X H X n→ π , where 
( , )GH A n  is the equivariant Eilenberg-MacLane space classifying Bredon 

cohomology in dimension n with coefficients in the GO -group A , cf. [El], p. 277. 
( )n Xπ  is the GO -group sending the orbit /G H  to the Abelian group ( )H

n Xπ . 
 This map : ( ( ), )n G nk X H X n→ π  is defined as the element of 
[ , ( ( ), )]G

G nX H X Nπ  corresponding to [ , ( ( ), )]
Gn nk X H X n∈ Φ π O  under the bijection 

of [El], thm. 2. Here : ( ( ), )n nk X H X nΦ → π  is given by 
  ( / ) : ( / ) ( ( ), ) ( ( ), )( / )H H

n n n nk G H k X G H X H X n H X n G H= Φ = → π = π  
 
 
Definition 2.1 
 Let  
  1 1: ( ( ),1)G G Gw BO H BO→ π  
be the map 1k  from above. Let GBSO  denote the G-homotopy-fibre of 1w . ( 1k  is 
well-defined, as GBO  is G-connected, and 1( )H

GBOπ  is Abelian, cf. (1.5)). 
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 Similarly, let 
  2 2: ( ( ) ( / 2),2)G G Gw BSO H BSO→ π ⊗Z Z  
be the map 2r kD , where : ( , ) ( ( / 2), )G Gr H A n H A n→ ⊗Z Z� is the mod 2 reduction 
map, and where 2 2: ( ( ),2)G G Gk BSO H BSO→ π  is defined as above. Let GBSpin  
denote the G-homotopy-fibre of 2w . (An argument using the G-fibration 
  1( ( ),1)G G G GBSO BO H BO→ → π  
shows that GBSO  is G-1-connected, and 2 2: ( ( ),2)G G Gk BSO H BSO→ π  is thus well-
defined.) 
 
 
Proposition 2.2 
 Let 1 2, , ..., kU U U  be GR -modules, 1 2, , ... , mV V V  be GC -modules, and 

1 2, , ... , nW W W  be GH -modules, as in (1.5). Then 

  
1 1 1

k m n
G

G
x y z

BSO BSO BU BSp
= = =

× ×∏ ∏ ∏�  

and 

  
1 1 1

k m n
G

G
x y z

BSpin BSpin BSpinU BSp
= = =

× ×∏ ∏ ∏�  

where BSpinU is the homotopy-fibre of the composite map 
  2

2( ( ),2) ( ,2) ( / 2,2)k rBU H BU H H⎯⎯→ π = ⎯⎯→Z Z  
with r being the mod 2 reduction map.  
 
Proof: 
 This follows immediately from (1.5) by taking the l-connected and 2-connected 
covers of G

GBO . Recall that BSp  is 2-connected, BU is 1-connected with 

1( )BUπ ≅ Z , and that 1( ) / 2BOπ ≅ Z  and 2 ( )BOπ ≅ Z . 
QED 

 
 
Remark 2.3 
 BSpinU  is not the same space as cBSpin  of [St], p.292: We have that 

( ) ( )n nBSpinU BUπ ≅ π  for 2n > , and especially 6 ( )BSpinUπ ≅ Z , while cBSpin  sits 
in the fibration sequence  
  ( ,2) cH BSpin BSO→ →Z , 
and therefore 6 6( ) ( ) 0cBSpin BSOπ ≅ π = . 
 
 
 From [L], p.257, we have the general definition of G-A-bundles, where A is the 
structure group. We explicify this definition in the cases where ( )A SO n=  or 

( )Spin n : 
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Definition 2.4 
 A G-SO-bundle E X↓ of dimension n is a G-map :p E X→  between G-spaces 
such that 
1) non-equivariantly, the map :p E X→  is a ( )SO n -bundle, and 
2) for every x X∈  and g G∈  the restricted map | :

xE x gxg E E→  is a map of  
 Gx-SO-modules. 
 If E X↓  and F X↓  are G-SO-bundles of the same dimension n, then a map 

:f E F→  is a G-SO-bundle-map if f  is both a G-map and a ( )SO n -bundle-map. 
 It is easily seen that the pull-back *f E  along a G-map f again is a G-SO-bundle. 
Furthermore, the pull-backs along G-homotopic maps of the same G-SO-bundle are 
equivalent G-SO-bundles. We define the direct  sum E F⊕  of two G-SO-bundles 
E X↓  and F X↓  as *( )E F E F⊕ = Δ × , where : X X XΔ → ×  is the diagonal 
map. 
 Finally, we get the Grothendieck-group ( )GKSO X  of isomorphism-classes of 

G-SO-bundles over the G-space X, and we define ( )GKSO X  as the subgroup of 
( )GKSO X  generated by differences of bundles E F−  satisfying 

  : x xx X E F∀ ∈ ≅  as Gx-SO-modules. 
 
 
Definition 2.5 
 A G-Spin-bundle E X↓  of dimension n is two G-spaces E and X and a G-map 

:p E X→ such that 
1) :p E X→  is non-equivariantly a ( )Spin n -bundle, and 
2) for every x X∈  and g G∈  the restricted map | :

xE x gxg E E→  is a morphism of  
 G-Spin-modules. 
As with G-SO-bundles we get a Grothendieck-group ( )GKSpin X  and a reduced 

version ( )GKSpin X . 
 
 
 
Theorem 2.6 
 The classifying spaces of the functors ( )GKSO − and ( )GKSpin − are GBSO  and 

GBSpin , respectively.  
 
Proof: 
 We denote momentarily the classifying spaces for the functors ( )GKSO −  and 

( )GKSpin − by 1B  and 2B . We construct G-maps 1: GB BSOφ →   and 

2: GB BSpinψ →  and show that they are G-homotopy-equivalences. 
 The spaces 1B  and 2B  are G-connected, as for every subgroup H of G, we have 
that 
  0

0 1( ) ( ( / ) ) 0H
GB KSO S G H +π = ∧ =     
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and 
   0

0 2( ) ( ( / ) ) 0H
GB KSpin S G H +π = ∧ = . 

 We have a 'forgetful' map : ( ) ( )G GKSO X KO Xφ → for every G-connected 
G-CW-complex X, defined by sending a G-SO-bundle to its underlying orthogonal 
G-bundle. As φ  is a natural transformation between functors, we get a G-map 

1: GB BOφ → . 
 Let 1( )GE F KSO S− ∈ , where E and F are G-SO-bundles. We decompose E (and 
F) according to [K], (4.1): Using the notation of (1.5), we can find real bundles 

1 2, , ... kη η η , complex bundles 1 2, , ... mζ ζ ζ , and symplectic bundles 1 2, , ... nξ ξ ξ , such 
that 

(2.7) 1 1 1 1... ... n nE U V W= ⊗ η ⊕ ⊕ ⊗ ζ ⊕ ⊕ ⊗ ξR C H  

All the xη 's are SO-bundles, as the SO-action on E in Hom ( , )x G xU Eη = R  gives a 
SO-action on xη . Furthermore, our decomposition of E above is easily seen to be a 

decomposition of G-SO-bundles. Now, as 1 1 1( ) ( ) ( ) 0KSO S K S KSp S= = = , all SO-, 
U- and Sp-bundles over 1S  are trivial. Especially, the xη 's, the yζ 's and the zξ 's are 

trivial bundles, and E becomes a trivial G-bundle. We see that 1( ) 0GKSO S = , and as 
1 1( ( / ) ) ( )G HKSO S G H KSO S+∧ ≅ , we conclude that 1B  is G-1-connected. 

 The map 1 1 1: ( ( ),1)G Gw B H BOφ → πD  is null-homotopic, as 
1

1 1 1 1[ , ( ( ),1)] ( ; ( ))G
G G G GB H BO H B BOπ = π  is zero: 1B  is G-1-connected, and [Br], 

(11.7.1) shows that 1B  is G-homotopy-equivalent to a G-complex with no cells in 
dimensions less that 2. The definition of G-cohomology, [Br], (1.6.4), implies that 

1
1 1( ; ( ))G GH B BOπ  vanishes. 

 We get a lift 1: GB BSOφ →  of φ . We show that for every finite, G-connected 

G-CW-complex X the induced map : ( ) [ , ]G
G GKSO X X BSOφ →  is an isomorphism. 

By using the equivariant Whitehead theorem and the fact that 
( ( / ) ) ( )n n

G HKSO S G H KSO S+∧ = , it suffices to consider the case where nX S= , 

1n ≥ . For 1n = , both 1( )GKSO S  and 1[ , ]G
GS BSO  are zero. 

 Let E and F be G-bundles over nS , 1n > , and let E F−  represent an element of 
[ , ] ( )n G n

GGS BSO KO S= . By using the decomposition (2.7), we get orthogonal 
bundles xη over nS . As ( ) ( )n nKO S KSO S= , the xη 's are actually SO-bundles, and E 
becomes a G-SO-bundle (the complex and symplectic parts of E give no problem 
here). Thus, we see that φ  is surjective. 
To show that φ  is injective, we show that the composite φ  is injective. So, let 

Ker( )E F− ∈ φ . Decompose E and F as above and note that we have 
O-isomorphisms between xη  and xη , U-isomorphisms between yζ  and yζ , and 

Sp-isomorphisms between zξ  and zξ . But on 0S  there is no difference between 

O-isomorphisms and SO-isomorphisms of vector-bundles, as ( ) ( )n nKO S KSO S≅ , 
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and as U- and Sp-isomorphisms are SO-isomorphisms, we get SO-isomorphisms on 
all the components in the decompositions of E and F. These are assembled to show 
that E F≅  as G-SO-bundles, and we see that 0E F− = , and φ  is injective. This 
shows that 1 GB BSO= . 

 The part of the theorem concerning ( )GKSpin −  and GBSpin  is proved in the 
same way: The map 2: GB BOψ →  is defined as the 'forgetful' map sending a 
G-Spin-bundle to its underlying orthogonal bundle. By using methods as above, we 
see that 1w ψD  and 2w ψD  are null-homotopic, and we get a G-map 2: GB BSpinψ →  
–  one of the main points is that if E X↓  is a complex bundle, then the obstruction to 
E being a Spin-bundle is 2

2 ( ) ( ; / 2)w E H X∈ Z . But 2 ( )w E  is the image of 1( )c E  
under the reduction map 2 2( ; ) ( ; / 2)H X H X→Z Z . (It is this fact that makes the use 
of the space BSpinU necessary). By showing that the decomposition (2.7) respects 
Spin-structures, we see as before that ψ  is a G-homotopy-equivalence. 

QED 
 
 We remark that the G-spaces GBSO  and GBSpin  are G-Hopf-spaces, cf. [Br], 
§11.4: The maps 1w  and 2w  are seen to be Hopf-maps by considering the 
functionality of the Elmendorfer construction – the map : ( ( ), )n nk X H X n→ π  will in 
general be a Hopf-map when X is a Hopf-space. GBSO  and GBSpin  with this 
Hopf-structure is denoted by GBSO ⊕  and GBSpin ⊕ . 
 The tensorproduct of G-SO- and G-Spin-bundles gives the Hopf-spaces GBSO ⊗  

and GBSpin ⊗  representing the functors 1 ( )GKSO+ −  and 1 ( )GKSpin+ − . As it is the 
case with GBO , we have that GBSO ⊕  and GBSO ⊗ , and that GBSpin ⊕  and GBSpin ⊗  
are equivalent G-spaces, but the Hopf-space-structures will in general be different. 
 
 
 For later use we describe the rational type of GBSO : 
 
 
Lemma 2.8 
 Let q be a prime not dividing the order of the group G. Let X be a G-space, and 
let Y be a q-local infinite G-loop space. Then the q-local map 
  ( ) ( ): [ , ] [ , ]

G

G
q qFix X Y X Y→ Φ Φ O  

sending the G-map :f X Y→  to the GO -map 
  ( ) : / ( : )H H HFix f G H f X Y→6  
is a bijection. 
 
Proof: 
 This is essentially [LMS], (V.6.8) and (V.6.9): If ( , ) 1G q = , then 

  ( ) ( )
( )

[ , ] [ , ]G H H INV
q q

H

X Y X Y≅∏  



Oriented, equivariant K-theory and the Sullivan splittings 
Kenneth Hansen 

 
 

10 

where the superscript 'INV' indicates that we are considering homotopy classes of 
'invariant maps', [LMS] (V.6.5). But such an invariant homotopy class corresponds to 
a GO -homotopy class of GO -maps X YΦ →Φ . 

QED 
 
 
Proposition 2.9 
 Let GBSO Q  be the representing space of the functor ( )GKSO − ⊗Q . Then 

  
2

( ( ) , )G G n G
n

BSO H BSO n
∞

=

≅ π ⊗∏Q Q  

Proof: 
 From (2.8) we have 
  ( ) [ , ] [ , ]

G

G
G G GKSO X X BSO X BSO⊗ ≅ ≅ Φ ΦQ Q Q O  

For a subgroup H of G we have that 

  
1 1 1

k m n
H

G
x y z

BSO BSO BU BSp
= = =

× ×∏ ∏ ∏Q Q Q Q�  

as it follows from (2.2), and where BSOQ , BUQ  and BSpQ  are the rational types of 
BSO , BU  and BSp , respectively. 
 It is well-known that 

  
2

( ( ) , )n
n

BSO H BSO n
∞

=

π ⊗∏Q Q�  

and similarly for BU and BSp, and we see that 

  
2

( ( ) , )H H
G G n G

n

BSO H BSO n
∞

=

≅ π ⊗∏Q Q  

 By applying [El], thm. 2, we get the result. 
QED 

 
 Of course, similar results holds for GBO Q , GBU Q , GBSp Q  and GBSpin Q  . 
 
 
 
3. The structure of GBSO  
 
 In this section we study the structure of the space GBSO  via the λ-ring-structure 

on the functor ( )GKSO − . The aim is to generalize results of Atiyah-Tall and 
Atiyah-Segal. 
 In the following we assume that G is a group of odd order. This implies that the 
numbers k and n of (1.5) are 1 and 0, respectively. Furthermore, 1( )GBOπ  is the 
constant coefficient system / 2Z . 
 We start by showing an equivariant analogue of the splitting principle in Bredon 
cohomology, cf. [Hu], (16.5.2). 
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Lemma 3.1 
 Let E X↓  be a G-bundle. Then there is a G-space ( )Q E  and a G-map 

: ( )q Q E X→ such that *( )q E  splits as a sum of G-line-bundles and the map 
  1 1: ( ; ( )) ( ( ); ( ))G G G Gq H X BO H Q E BO∗ π → π  
is a monomorphism.  
 
Proof: 
 As in the non-equivariant case, [Hu] (16.5.2), we construct ( )Q E  inductively by 
going from X to ( )P E  – the projective bundle of E. We see that the bundle *( )p E  
over ( )P E  splits as a sum of a canonical line-bundle and another bundle of lower 
dimension than E, and we repeat this procedure on the latter bundle. (Here 

: ( )p P E X→  is the projection on the base space). 
 The injectivity of the map in Bredon-cohomology is also shown stepwise. It 
suffices to show that the map 
  * *

1 1: ( ; ( )) ( ( ); ( ))G G G Gp H X BO H P E BO∗ π → π  
is injective. 
 As the order of the group G is odd, and the coefficient system 1( )GBOπ  is a (2)Z -
module, we get from [LMS], (V.6.8) and (V.6.9), that there is a natural isomorphism 
(3.2) * *

1 ( )
: ( ; ( )) ( ; / 2)H

G G H
H Z BO H ZΦ π →⊕ Z  

Here the sum is over all conjugacy classes of subgroups of G. 
 Using (3.2), we reduce the problem to show that 
  * * *( ) : ( ; / 2) ( ( ) ; / 2)H H Hq H X H P E→Z Z  
is injective for every subgroup H of G. But as G is of odd order ( )HP E  equals the 
projective bundle of the real bundle | H

H H
X

E X→ , and we now use the 
non-equivariant splitting principle of [Hu], (16.5.2). 

QED 
 
 

If E X↓  is a real G-bundle, we define 1
1 1( ) ( ; ( ))G Gw E H X BO∈ π  as 1( )w E −V , 

where V is the trivial bundle having *V E=  as fibre. If 1( ) 0w E = , we say that E is G-
orientable. 
 
 
Lemma 3.3 
 Let E and F be G-line-bundles over the G-connected G-space X. Then  
  1 1 1( ) ( ) ( )w E F w E w F⊕ = + .  
 
Proof: 
 Let ( )GL X  be the semi-group of G-line-bundles over X with ⊗  as the 
composition. ( )GL −  is clearly a representable functor. Denote the classifying space by 

GBL . Since ( )GL X  has a natural multiplication for all X, we see that GBL  is a 
G-Hopf-space. 
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 We now get the following homotopy commutative diagram: 

  

1

1

1

1

( ( ),1)

( ( ),1)

k
G G G

i j

w
G G G

BL H BL

BO H BO

⎯⎯→ π
↓ ↓

⎯⎯→ π
 

where the map i is induced by the map 

  *( ) ( ) :GGL X KO X E E E→ −6  

and j comes from the GO -group-homomorphism  1 1 1( ) : ( ) ( )G Gj BL BOπ π → π . 
 All these maps except possibly i are Hopf-maps. The commutativity of the 
diagram now gives the result. 

QED 
 
 
Corollary 3.4 
 Assume X is a G-connected G-space. Then ( )GKSO X  is stable under the 
multiplication induced by ⊗ .  
 
Proof: 
 It suffices to show that if E and F are G-orientable then E F⊗  is G-orientable, 
too. By using the splitting principle (3.1), we reduce to the case where E and F are 
line-bundles, and (3.3) gives the result. 

QED 
 
 
 We recall that ( )GKO X  is a λ-ring: If E is a G-bundle over X and n a 
non-negative integer, then nEλ  is the real G-bundle nEΛ , where the G-action is 
given by  
 1 2 1 2( ... ) ( ) ( ) ... ( )n ng e e e ge ge ge∧ ∧ ∧ = ∧ ∧ ∧ . 
 
 
Proposition 3.5 
 Let X be a finite G-connected G-CW-complex. Then ( )GKO X  is a special, finite-
dimensional λ-ring.  
 
Proof: 
 ( )GKO X  is finite-dimensional, as every real G-bundle is finite-dimensional: Let 
E be a G-bundle over X, where n the dimension of a fibre of E. Then 0mEΛ =  for 
m n> . 
 That ( )GKO X  is a special λ-ring follows from the splitting principle in 

GKO -theory; see [tD], p.32. 
QED 

 
Corollary 3.6 
 ( )GKSO X is a special λ-ring. ( )GKSO X  is a λ-ideal in ( )GKSO X . 
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Proof: 
 We must show that if E is a G-oriented G-bundle, then nEΛ  is G-oriented for all 
integers n. Using the splitting principle (3.1), we may assume that E is a sum of 
linebundles, 1 2 ... nE F F F= ⊕ ⊕ ⊕ . We have the isomorphism 

  1 2 (1) ( )( ... ) ( ... )n
m i i nF F F F FΛ ⊕ ⊕ ⊕ = ⊗ ⊗⊕  

where the sum is over all sequences (1) (2) ... ( )i i i n< < <  of integers, cf. [Hu], 

(5.6.10). By using (3.3) we see that 1( )nw EΛ  equals 1( ) 0
m

w E
n

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

QED 
 
Proposition 3.7 
 For X G-connected, the γ -ring ( )GKSO X  is an oriented γ-ring. 
 
Proof: 
 According to [AT], p.285 it suffices to show that for every ( )Gx KSO X∈  there 
exist G-bundles E and F over X such that x E F= − , and, if n denotes the dimension 
of E and F, then the linebundles nEΛ  and nFΛ  are the trivial one-dimensional 
G-bundle V X X× ↓ . 
 Write x as E −V , where E is a G-bundle and V is the trivial bundle V X X× ↓  
for some G-module V, as in (1.7). Discarding the G-actions for a moment, we see that 
  1 1 1 10 ( ) ( ) ( ) ( )w x w E w w E= = − =V  
and thus both nEΛ  and nFΛ  are trivial line-bundles, as ( )KSO X  is an oriented 
λ-ring. We decompose nEΛ  as in (1.5). As nEΛ  is one-dimensional, this 
decomposition most be of the form n

iEΛ ≅ ⊗ ηRR , as R , the trivial one-dimensional 
representation, is the only 1-dimensional representation of G. If we ignore the 
G-action, R  gives the  trivial line-bundle, and n

iEΛ ≅ η  is a trivial bundle. Thus, 
both nEΛ  and nΛ V  are isomorphic to R . 

QED 
 
From now on we assume that p is an odd prime, and that G is a p-group. 
 
 
Proposition 3.8 
 Let X a G-connected G-CW-complex. Then ˆ( )G pKSO X ⊗Z  is a p-adic γ-ring. 
 
Proof: 
 As X is G-connected, the natural inclusion ˆ ˆ( ) ( )G Gp pKSO X KO X⊗ → ⊗Z Z  is a 
monomorphism preserving the γ-ring-structure. [tD], (3.8.6) now gives the result. 

QED 
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Theorem 3.9 
 There is a splitting of G-Hopf-spaces: 

  ^
0 1 1

1( ) ... ,
2G p m

pBSO B B B m⊕ ⊕ ⊕ ⊕
−

−
× × =�  

Proof: 
 [AT], lemma 2.2, p.279 shows that, as ˆ( )G pKSO X ⊗Z  is a p-adic γ-ring, the 

domain of the Adams operations ˆ ˆ: ( ) ( )k
G Gp pKSO X KSO Xψ ⊗ → ⊗Z Z  in the 

variable k extends by continuity to operations  
  ˆ ˆ: ( ) ( )a

G Gp pKSO X KSO Xψ ⊗ → ⊗Z Z ,  

where ˆ
pa∈Z . 

 Letting α be a generator of the finite factor /( 1)p −Z  of the splitting 
  *ˆ ˆ( ) /( 1)p pp≅ − ×Z Z Z  

we have from [AT], p.284, that ˆ( )G pKSO X ⊗Z  splits canonically into eigenspaces 

for the operator αψ , the eigenvalues being , 0,1,..., 2i i pα = − . 
 As this splitting is canonical in the space X, we get a corresponding splitting of 
the classifying space ^( )G pBSO  into 1p −  components. 
 Half of these components vanish: Let i be one of the odd numbers 1, 3, ... 2p − , 
and let ˆ( )G px KSO X∈ ⊗Z  be an eigenvector for αψ  with eigenvalue iα . As 

( 1) / 2 1p−α = − , [AT], (5.2), p.264, shows that 
  

( 1) / 21 ( 1) / 2( ) ( )
i p i px x x x

−− α −ψ = ψ = α = −  
But as ˆ( )G pKSO X ⊗Z  is an oriented γ-ring, (3.7), 1−ψ  acts as the identity operator, 
see [AT], p.285. Thus, x must be 0, and these all of 'odd' components vanish. 

QED 
 
 
Theorem 3.10 
 Let p be an odd prime. Then there is a splitting of G-Hopf-spaces 

  ^
0 1 1

1( ) ... ,
2G p m

pBSO B B B m⊗ ⊗ ⊗ ⊗
−

−
× × =�  

 
Proof: 
 The proof is the same as that of (3.9) - the Adams operation aψ  acts on 

^1 ( )G pKSO X+  by ( )
ia ax xψ = , where x is an element of the i'th eigenspace. 

QED 
 
Theorem 3.11 
 Let p be an odd prime and let k be an integer such that 2k p+ Z  generates the 
group of units in the ring 2/ pZ� Z . Then the cannibalistic class kρ  induces an G-
homotopy-equivalence of G-Hopf-spaces 
  0 0:k B B⊕ ⊗ρ →  
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Proof: 
 [AT] (II 4.4). 

QED 
 
 
We obtain from [AS] thm.2 : 
 
 
Theorem 3.12 
 Let p be a prime. Then there is a G-homotopy equivalence of G-Hopf-spaces 
  ^ ^: ( ) ( )G p G pBSO BSO⊕ ⊗δ →  
 
 
 A variant of δ  is δ , which is the map kρ  at the first component 0B  and δ  at the 
rest of the components. As above we see that 

(3.13) ^ ^: ( ) ( )G p G pBSO BSO⊕ ⊗δ →  

is an equivalence of G-Hopf-spaces. 
 
 
Remark 3.14 
 Actually, the results of [AT] and [AS] cannot be used directly in (3.9)-(3.13): In 
[AT] and [AS] it is assumed that we have a λ-ring R with an augmentation : Rε → Z , 
and then the results of [AT] holds for the augmentation ideal I. 
 We are in a more general situation, in that we have the λ-ring ( )GKSO X  and the 
λ-homomorphism : ( ) ( )GKSO X RO Gε →  sending a G-bundle E to the representation 

*E . The kernel of ε is ( )GKSO X . It is possible to generalize the results of [AT] and 
[AS] to this case without any serious difficulties. 
 
 
Counterexample 3.15 
 The crucial step in getting (3.9)-(3.12) from [AT] and [AS] is (3.8). When G is 
not a p-group, or when we do not localize at the order of the group, (3.8) does not 
hold. We give a simple counterexample: 
 If (3.8) did hold, then we would have, as in (1.5.6) in [AT], that the Adams' 
operation : ( ) ( )k

G GKSO X KSO Xψ →  would be p-adically continuous in the variable 
k. 
 Let / 3G = Z  be the cyclic group of order 3, and let p be the prime 5. Then 

4( )n
GKSO S  is isomorphic to ( )RO G  and is a free Z -module of rank 2 with 

generators 1, V corresponding to the two irreducible GR -modules of dimension 1 and 
2, respectively. kψ  maps 1a bV+  to 2 ( 1 )nk a bV+  if ( ,3) 1k =  and to 2 ( 2 )nk a b+  if 
3 | k . 
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 If kψ  was 5-adically continuous in k, then for every 4( )n
Gx KSO S∈  and integer 

m we could find an integer r, such that for 5 |r s  and integer k, we would have  
  4( ) ( ) 5 ( )k s k m n

Gx x KSO S+ψ −ψ ∈ ⋅   
But if 3 | ( )k s+  and (3, ) 1k =  and 1x a bV= + , then 
  2 2 2 2( ) ( ) ((( ) ) 2 )1k s k n n n nx x k s k a k b k V+ψ −ψ = + − + +  
which definitely not is contained even in 45 ( )n

GKSO S⋅ . 
 
 
4. GSF  and the Adams' conjecture 
 
 We now proceed to study the G-space GSF . Important ingredients in this analysis 
is the equivariant Adams' conjecture, due to McClure, cf. [MC], and the results of §3. 
Our standing assumption is that p is an odd prime, G is a p-group, and that all spaces 
are p-local. 
 
 
Definition 4.1 
 Let 0

GQ S  be the G-loop-space lim V VS
→
Ω , where the limit is over all G-modules 

in a fixed, complete G-universe U , cf. [LMS] p. 11. 0
GQ S  is a 'G-ring-space', where 

the additive structure comes from the 'loop-sum' * : V V V VS SΩ →Ω , which exists for 
every G-module V, and where the multiplication is composition of maps. We let the 
identity map be the basepoint of 0

GQ S . 
 Let GSF  be the G-connected cover of 0

GQ S . GSF  inherits a (multiplicative) G-
Hopf-space structure from 0

GQ S . 
 
 Certain facts about 0

GQ S  are well-known - we recall from [S70], p.62, that 
(4.2) 0

( )

( ) ( )G
G H

H

Q S Q BW∏� , 

where the product is over all conjugacy classes (H) of subgroups of G. HW  is the 
Weyl-group ( ) /GN H H . By taking connected covers we see that 

(4.3) 0
( )

( ) ( )G
G H

H

SF Q BW∏� ,  

where 0 ( )HQ BW  is the basepoint component of ( )HQ BW . 
 
 
Definition 4.4 
 Let X be a finite G-CW-complex. The G-fibration : E Xξ →  is a spherical G-
fibration or a G-sphere-bundle, if 

1)  for every x X∈ there is a xG -representation V such that the fibre xE  is xG - 
 homotopy-equivalent to VS ,  and 
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2)  the map X E→  given by (the basepoint of )xx E6  is a G-cofibration. 
 
 (This is the definition of [MC], p.230-231). 
 
Fibre-wise smash-products makes the set of G-sphere-bundles over X into a 
semigroup, and the corresponding Grothendieck group is denoted ( )GKF X . The 

subgroup ( )GKF X  is defined as follows 

(4.5)  ( ) : as spacesG x x xE F KF X x X E F G− ∈ ⇔ ∀ ∈ −� . 

 The functors ( )GKF −  and ( )GKF −  are easily seen to be representable functors. 

We denote the classifying space of ( )GKF −  by GBF . 
 
 It follows from [W] that 

(4.6) 0 ( ) 0GBFπ =    and   1( ) ( )GBF A G ×π ≅ , 

where the GO -group ( )A G ×  is given by ( ) ( / ) ( )A G G H A H× ×=  – the unit group of the 
Burnsidc ring ( )A H . Furthermore, we see that GBF  is the classifying G-space of the 
G-monoid GF  – the subspace of 0

GQ S  consisting of G-homotopy-equivalences with 
the monoid structure coming from composition of maps. 
 
 Let GBSF  be the 1-connected cover of GBF . It follows that GBSF  is the 
classifying space of the monoid GSF , and thus 

(4.7) G GBSF SFΩ �  

 
 Define the natural transformation : ( ) ( )G G GJ KO X KF X→  by sending the real 
G-bundle E X↓  to its fibrewise one-point compactification ES X↓ . It is 
immediately seen that GJ  restricts to a natural transformation ( ) ( )GGKO X KF X→ , 
and thus produces a G-Hopf-map :G G GJ BO BF→ . Furthermore, by killing off  1π , 
we get a lift of :G G GJ BSO BSF→ . 
 
 Let / GF O  and / GSF SO  be the homotopy fibres of :G G GJ BO BF→  and 

:G G GJ BSO BSF→  respectively. 
 
 
Proposition 4.8 
 The natural map : / /G GSF SO F Oθ →  is a G-homotopy equivalence if G is of 
odd order or if we localize at an odd prime p. 
 
Proof: 
 We have the G-homotopy commutative diagram: 
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1 1

/

/

( ( ),1) ( ( ),1)

G

G

J
G G G

J
G G G

G G G G

SF SO BSO BSF

F O BO BF

H BO H BFψ

θ

⎯⎯→ ⎯⎯→
↓ ↓ ↓

⎯⎯→ ⎯⎯→
↓ ↓

π ⎯⎯→ π

 

 
 Let H be a subgroup of G. 1( ) ( ) / ( )H

GBO RO H R Hπ ≅ and 1( ) ( )H
GBF A H ×π =  

are both 2-torsion groups, and θ is thus an equivalence away from 2. 
 If G is of odd order, then both ( ) / ( )RO H R H  and ( )A H ×  are isomorphic to 

/ 2Z . Furthermore, the non-zero element in 1 1( ( / ) ) ( )G HKO S G H KO S+∧ ≅  is 
represented by the reduced Möbius-bundle with trivial G-action and, as in the 
non-equivariant case, is mapped by GJ  to the non-trivial element in 

1( ( / ) )GKF S G H +∧ . Thus ψ  is a G-homotopy equivalence and the result follows. 
QED 

 
 
 The Adams conjecture relates GJ  to the Adams-operations in K-theory. The non-
equivariant version states: 
 
 Let k be an integer, ( )x KO X∈ . Then there exist an integer n, such that 
  ( ) 0n kk J x xψ − =  . 
 
 By localizing at a prime p, satisfying ( , ) 1p k = , we get rid of the factor k. 
Various attempts have been made to generalize the Adams conjecture to the 
equivariant case. In [FHM], theorem 0.4, it is shown that ( ) 0n kk sJ x xψ − = , where 
( , ) 1k G = , and s is the minimal integer, such that 1 (mod )sk G≡ ± . The extra factor 

s is necessary – it insures that the 'fibres' of the virtual G-bundles k xψ  and x are the 
same element in ( )aR G  for every a X∈ . 
 McClure has another variation, cf. [MC] (5.1). This uses a variant of the functor 

( )GKF X : 
 
 Let p be a prime. Define the equivalence relation ∼  of stable p-equivalence on 

( )( )G pKF X  as follows: The G-sphere-bundles E and F are stably p-equivalent if there 
exists a real G-representation V and G-fiber maps 
  1 : V Vf S E S F→  and  2 : V Vf S F S E→  
such that 1f  and 2f  have degrees prime to p on all fixed sets of each fibre. 
 Denote the set of stably p-equivalence classes in ( )( )G pKF X  by ( ) ( )p

GKF X , and 

denote the reduced version by 
( )

( )
p

GKF X . 
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 The relation between ( )( )G pKF X   and ( ) ( )p
GKF X  is as follows, cf. [MC], (1.3): 

 
 Let X be a G-connected, finite G-CW-complex. Then there is a natural, short 
exact sequence 
  ( )

( )0 ( ) ( ) ( ) 0p
G p GjO G KF X KF Xα→ ⎯⎯→ ⎯⎯→ →  

where 0( ) ( ) / ( )hjO G RO G RO G=  ([tD] p.229), and α is the composite 
  ( ) ( ) ( )( ) Im( : (*) (*) ) ( )G p G p G pjO G J KO KF KF X→Z Z  
 
 
Lemma 4.9 
 For X G-connected we have 

( )
( )( ) ( )

p
G GpKF X KF X≅ . 

 
Proof: 
 We have the exact commutative diagram 
  

  

( )
( )

( )
( ) ( )

( )
( ) ( )

0 0

0 ( ) ( ) 0

0 ( ) ( ) ( ) 0
||

0 ( ) (*) (*) 0

0 0 0

p
G Gp

p
p G p G

p
p G p G

KF X KF X

jO G KF X KF X

jO G KF KF

↓ ↓

→ → →
↓ ↓ ↓

→ → → →
↓ ↓

→ → → →
↓ ↓ ↓

 

 
QED 

 
 
The equivariant Adams' conjecture [MC], (5.1) is now 
 
 
Theorem 4.10 
 Let p be an odd prime and let k be an integer prime to p and G  . Then the 
composite 
  1

( ) ( ) ( )( ) ( ) ( )
k J

G p G p G pBSO BSO BSFψ −⎯⎯⎯→ ⎯⎯→  
is null-homotopic. 
 
 
 Actually, this is not McClures formulation of the Adams conjecture, but upon 
using reduced GKO - and GKF -groups, and by using (4.9), we get the result above. 
The reason why this formulation doesn't involve extra factors is that we work in 
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reduced GKO - and GKF -theory. This means that the condition that ξ  and kξ  have the 
same fibres over x in ( )xR G  for x X∈ , is automatically fulfilled. 
 
 
Corollary 4.11 
 There is a map ( ) ( ): ( ) ( / )k G p G pBSO F Oα →  such that 
 

  
( ) ( ) ( )

( )

1

( / ) ( ) ( )

( )

J
G p G p G p

k
k

G p

F O BSO BSF

BSO
α ψ −

⎯⎯→ ⎯⎯→
↑3  

 
commutes up to homotopy. 
 
 
Definition 4.12 
 Let G be a group of odd order, and let p be an odd prime. Let k be an integer, 
such that 2k p+ Z  generates the unit group 2( / )p ×Z Z . Define the G-Spaces GJ ⊕  and 

GJ ⊗  as the homotopy fibres of the maps 1:k
G GBSO BSO⊕ ⊕ψ − →   and 

/1:k
G GBSO BSO⊗ ⊗ψ → . As both 1kψ −  and /1kψ  are Hopf-maps, GJ ⊕  and GJ ⊗  

becomes G-Hopf-spaces. GJ ⊕  and GJ ⊗  are equivalent G-Spaces, but the 
Hopf-structures will in general be different. 
 
 
Remark 4.13 
 In [FHM], (0.5) it is shown that GJ  is the G-connected cover of equivariant, 
orthogonal, algebraic K-theory, ( , )kKO GF , provided that k is a prime power. 
 
 
5. The e-invariant and the Sullivan splittings 
 
 We now generalize the splittings 

  / CokF O BSO J×�    and     CokSF J J×�   

of Sullivan to the equivariant case. We already have one of the maps needed to prove 
this, namely kα , and we now define the other – the e-invariant. 
 As usual, p is an odd grime, G is a p-group, all spaces are p-local, and k is an 
integer such that 2k p+ Z  generates the unit group 2( / )p ×Z Z . 
 
 The main reason for studying G-Spin-bundles is that, as in the non-equivariant 
case, a G- (8 )Spin n -bundle has a Thom-class in GKO -theory. Recall from [A], (6.1): 
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Theorem 5.1 
 Let Π be a compact Lie group, V a Π-Spin-module of dimension 8n, and X a 
compact G-Space. Then there is an element ( )Gu KO X∈ , defined by using the Dirac 
operator on V, such that multiplication with u induces an isomorphism 
  ( ) ( )G GKO X KO X V→ ×  
 
 
Theorem 5.2 
 Let G be a finite group, E X↓  a G- (8 )Spin n -bundle over the compact 
G-connected G-CW-space X. Then there is an isomorphism 
  : ( ) ( ( ))GE GKO X KO T EΦ →  
where ( )T E  is the Thom-complex of E. 
 
Proof: 
 Let R X↓  be the principal G-Spin(8n)-bundle corresponding to E, that is, we 
have a G-Spin(8n)-module V such that (8 )Spin nE R V≅ ×  (V is actually the fibre of E, at 
the base point of X, and the equivalence above follows from the fact that X is 
G-connected). 
 As Spin(8n) acts freely on R, we see that 
   (8 ) ( ) ( / (8 )) ( )G Spin n G GKO R KO R Spin n KO X× ≅ ≅ ,  
and that  
  (8 ) ( ) ( ) ( ( ))GG Spin n GKO R V KO E KO T E× × ≅ ≅  
as E is not a compact G-space. The result follows now immediately from (5.1). 

QED 
 
 
 We construct a G-Hopf-map : / G Ge F O BSO ⊗→  as follows: 
 Let X be a finite G-connected G-CW-complex. Then the elements in [ , / ]G

GX F O  
can be described as 3-tuples ( , , )E F h , where E and F are stable G-bundles over X, 
such that ( )GE F KSO X− ∈  and where h is a fibrewise G-homotopy equivalence 

: E Fh S S→ . (See [BM], p.146 for a closer description of the group structure on 
[ , / ]G

GX F O .) 
 Since 2 is inverted, we can assume that that E and F are G-Spin-bundles, and by 
stabilizing, we can further assume that E and F are G-Spin(8n)-bundles. 
 Let (1) ( ( ))GE E KO T EΔ = Φ ∈  and  (1) ( ( ))GF F KO T FΔ = Φ ∈  be the 
Thom-classes of E and F. h gives a map ( ) ( )T E T F→ , and we define ( , , )e E F h  as 
the unique element in 1 ( )GKO X+  satisfying 

(5.3) *( ) ( , , )F Eh e E F hΔ = ⋅ Δ  

– observe that ( ( ))GKO T E  is a free ( )GKO X -module of rank 1, and that EΔ  and 
*( )Fh Δ  are the image of units of ( )GKO X . 
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Proposition 5.4 
 We have a G-homotopy commutative diagram 
 

  
1/

/ i
G G

k

k

G G

e

F O BSO

BSO BSO

⊕

ρ

ψ⊗ ⊗

⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
where k is an integer, and : / G Gi F O BSO ⊕→  is the 'inclusion' map. 
 
Proof: 
 Let X be a finite, G-connected G-CW-complex, ( , , ) [ , / ]G

GE F h X F O∈ . Then  

  

* *

*

1

( ) ( )(1/ )( , , ) (1/ )
( )

( ) ( ( )) ( ) ( ( , , ))

k
k k F E F

k
E E F

k k k k

h he E F h
h

E F E F i E F h−

⎛ ⎞Δ ψ Δ Δ
ψ = ψ = ⋅ =⎜ ⎟Δ Δ ψ Δ⎝ ⎠

ρ ⋅ ρ = ρ − = ρ

D
 

QED 
 
 
Corollary 5.5 
 The composite / e

G G GSF F O BSO ⊗⎯⎯→ ⎯⎯→  factors through GJ . 
 
Proof: 
 We must show that the composite 1//

ke
G G G GSF F O BSO BSOψ⊗ ⊗⎯⎯→ ⎯⎯→ ⎯⎯⎯→  

is nullhomotopic. But from (5.4) we have the homotopy commutative diagram 
 

  
1/

/
k

k

j i
G G G

G G

e

SF F O BSO

BSO BSO

⊕

ψ⊗ ⊗

ρ

⎯⎯→ ⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
and as i jD  is null-homotopic, we get the result. 

QED 
 
 
Lemma 5.6 
 Let k be as in (4.12). Let : /k G GBSO F O⊕α →  be the map of (4.11). Then the 
composite :k G Ge BSO BSO⊕ ⊗α →D  is G-homotopic to :k

G GBSO BSO⊕ ⊗ρ → . 
 
Proof: 
 We have the diagram 
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1

1/

||
/

k

k

G G

k
i

G G
k

e

G G

BSO BSO

F O BSO

BSO BSO

−ψ⊕ ⊕

α

⊕

ρ

ψ⊗ ⊗

⎯⎯⎯→
↓

⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
which is homotopy commutative because of (4.11) and (5.4). As 
 

  

1

1/

k

k

G G
k k

G G

BSO BSO

BSO BSO

−ψ⊕ ⊕

ρ ρ

ψ⊗ ⊗

⎯⎯⎯→
↓ ↓

⎯⎯⎯→

 

 
is commutative, too, we see that 1/ ( )k keψ αD D  and 1/ k kψ ρD  are G-homotopic maps. 
 As in [AII], p.152, it is possible to define kρ  on a complex G-bundle E X↓  by 
using the Thom-isomorphism : ( ) ( ( ))GE GK X K T EΦ → , where ( )T E  is the 
Thom-complex of E, cf. [A], (4.8). We have 

(5.7) 1( ) (1) ( )k k
E E GE K X−ρ = Φ ψ Φ ∈D D , 

and from [AII], (5.4), we get 

(5.8) 1 ( ) ( ) ( ) , ( )k k k
E E Gx E x x K X−Φ ψ Φ = ρ ⋅ψ ∈D D  

(This definition of kρ  coincides with that of [AT], p. 281 and p. 268 – see [AT], p.286 
ff.). 
 Letting 2 ( *)n nY S T= = ↓C  and by using the exponential nature of kρ  and its 
behaviour on complex line-bundles, we see that ( *)n nkρ ↓ =C  and from [tD], (3.5.1), 
and (5.8), we get 

(5.9) ( ( ))( ) ( ) ,k ng k g g Gψ χ = ⋅ χ ∈ , 

where 2( )n
GK Sχ∈   is considered as a complex character under the Thom-

isomorphism 
  2: ( ) (*) ( )n

n
G GR G K K SΦ = →C  

 As 2 is inverted, the map 
  2 2( ) ( ) ( ) ( )n n

G GKSO S RO G R G K S≅ → ≅  
given by 'complexification' of representations, is injective, and preserves the 
λ-ringstructure. 
 Selecting a Z -basis for ( )RO G  consisting of the irreducible representations, we 
see that the matrix of the map 1kψ −  has non-vanishing determinant – modulo k this 
matrix is simply the diagonal matrix with –1 as the only entrys. We conclude that 

1kψ −   induces monomorphisms 
  2 2 2(( 1) ) : ( ) ( )k H H H

n n G n GBSO BSOπ ψ − π → π  
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for every subgroup H of G. 
 Going over to the multiplicative structure, we again have that 1/ kψ  gives 
monomorphisms in homotopy (for odd n ( )H

n GBSOπ vanishes). We conclude that 

ke αD  and kρ  give the same maps on the homotopy groups. 
 If we now consider kρ  and ke αD  as natural transformations between the 

representable functors ( )GKSO −  and 1 ( )GKSO+ − , we see that they coincide on the 
G-cells ( / )nS G H +∧ .  We want to show that kρ  and ke αD  coincide on every 
G-CW-complex. 
 As ( )G GKSO BSO   is torsion-free, ([MR], at the bottom of p. 97,) it suffices to 
show that kρ  and ke αD  coincide after rationalization. By applying (2.9), which states 
that both GBSO ⊕Q  and GBSO ⊗Q  are products of equivariant Eilenberg-MacLane-
spaces, and Elmendorf's description of G-cohomology, [El], p.277, the problem 
reduces to show that for every integer 2n >  and subgroup H of G the natural 
transformations 
  ( ; ( ) ) ( ; ( ) )n H n H

n G n GH BSO H BSO− π ⊗ → − π ⊗Q Q  
induced by (( ) )k H

nπ ρ  and (( ) )k H
n eπ αD coincide. But ( )k Hρ  and ( )k He αD  agree on 

homotopy groups, and the result follows. 
QED 

 
Definition 5.10 
 Recall the G-Hopf-Space splitting 
  0 0( )GBSO B B⊗ ⊗ ⊗ ⊥×�  
of (3.9), where 0 1 1( ) ... mB B B⊗ ⊥ ⊗ ⊗

−× ×� . Let π  and ⊥π  be the projections  
  0: GBSO B ⊗π →  and 0: ( )GBSO B⊥ ⊗ ⊥π → . 
 Define : / G GF O BSOβ →  as the composite 

  
/ / / e i

G G G

Id
G G G G G

F O F O F O

BSO BSO BSO BSO BSO
⊥

Δ ×

×δ π×π⊗ ⊕ ⊗ ⊗ ⊗

⎯⎯→ × ⎯⎯→

× ⎯⎯⎯→ × ⎯⎯⎯→
 

 Here Δ is the diagonal map, while δ  is the map from (3.12). 
 Finally, define the G-space Cok GJ  as the homotopy fibre of β . 
 
 
 We are now able to generalize the splittings of Sullivan [MN], (5.18)) to the 
equivariant case. 
 
 
Theorem 5.11 
 β  gives a splitting 
  / CokG G GF O BSO J×�  
 
 
Proof: 
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 We show that :k G GBSO BSOβ α →D  is a G-homotopy equivalence: 
 :k G GBSO BSO⊕ ⊗β α →D  G-homotopic to the composite 

  ( 1)
0 0( )

k k

G G GBSO BSO BSO B B
⊥πρ ×π δ ψ −Δ⊕ ⊕ ⊕ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯⎯⎯⎯→ ×  

as it follows from (5.6) and (4.11). Separating GBSO ⊕  into 0B ⊕  and 0( )B ⊕ ⊥ , we see 
that the composite 
  0 0 0( )GB BSO B Bβ α⊕ ⊕ ⊗ ⊗ ⊥→ ⎯⎯→ ×D  
equals 
  0

0 0 0 0 0( )
k

B B B B BΔ πρ ×⊕ ⊕ ⊕ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯→ ×  
where 0 is a null-homotopic map, while the composite 
  0 0 0( ) ( )GB BSO B Bβ α⊕ ⊥ ⊕ ⊗ ⊗ ⊥→ ⎯⎯→ ×D  
becomes 
  ( 1)

0 0 0 0 0( ) ( ) ( ) ( )
k k

B B B B B
⊥πρ ×π δ ψ −Δ⊕ ⊥ ⊕ ⊥ ⊕ ⊥ ⊗ ⊗ ⊥⎯⎯→ × ⎯⎯⎯⎯⎯⎯→ ×  

Thus, if we separate the homotopy groups of the spaces GBSO ⊕  and GBSO ⊗  into 
direct summands 0 0( ) ( ) (( ) )n G n nBSO B B⊕ ⊕ ⊕ ⊥π = π ⊕ π  and 

0 0( ) ( ) (( ) )n G n nBSO B B⊗ ⊗ ⊗ ⊥π = π ⊕ π , the matrix of kβ°α  becomes 

  
0 ( 1)

k k

k

⎛ ⎞ρ ρ
⎜ ⎟

δ ψ −⎝ ⎠
  

 It suffices to show that 0 0:k B B⊕ ⊗ρ →  and 0 0( 1) : ( ) ( )k B B⊕ ⊥ ⊗ ⊥δ ψ − →  are G-
homotopy-equivalences. The first fact follows from (3.11), while the second is more 
or less obvious – one needs the fact that δ  preserves the splittings (3.9) and (3.10), 
but this follows from the construction of δ , (3.12) and [AS], thm. 3. Furthermore, on 
the factor 0( )B ⊕ ⊥ , the map 0 01: ( ) ( )k B B⊕ ⊥ ⊕ ⊥ψ − →  is a G-homotopy-equivalence, as 
this follows from the proof of (3.9), and the description of 0( )B ⊕ ⊥  therein. 

QED 
 
Corollary 5.12 
 We have a splitting 
  CokG G GSF J J×�  
 
Proof: 
 We have the G-homotopy commutative diagram 
 

  

1

/1

||
/

k

k

G G G

G G G

G G G

J BSO BSO

SF F O BSO

J BSO BSO

ψ −⊕ ⊕ ⊕

α α

⊕

β β δ

ψ⊗ ⊗ ⊗

⎯⎯→ ⎯⎯⎯→
↓ ↓

⎯⎯→ ⎯⎯→
↓ ↓ ↓

⎯⎯→ ⎯⎯⎯→

 

 
where δ  is the snap from (3.13). Here the horizontal sequences are fibration 
sequences, and the maps α  and β  are the maps induced by α  and β . 
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 Since β αD  and δ  are G-homotopy equivalences, a five-lemma argument on 
every fixed point set diagram for every subgroup H of G shows that β αD  is a 
G-homotopy equivalence. As δ  is a G-homotopy-equivalence, the homotopy fibres of 
β  and β  must be the same, namely Cok GJ . 

QED 
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