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The purpose of this paper is two-fold: To study oriented G-bundles and the
corresponding K-theory, and to generalize the p-local splittings

F/O=BSOxCokJ and SF=JxCoklJ

of Sullivan to the equivariant case.
This paper is divided into 5 parts. We start by recapitulating some essential facts
about complex and real K -theory, and we study their classifying spaces.

In section 2 we introduce G-SO-bundles and G-Spin-bundles, and we find a
connection between these and the 'equivariant Stiefel-Whitney-classes'.

In section 3 we study the space BSO; in detail, at least when G is of odd order.
Results about the A-ring-structure on BSO, of Atiyah-Tall and Atiyah-Segal are

generalized — here it is necessary to assume that G is a p-group, where p is an odd
prime, and that we are in the p-local situation.
In section 4 we study the space SF; using the equivariant Adams' conjecture,

and finally in section 5 we define the e-invariant and prove the Sullivan splittings.

Throughout the paper G is assumed to be finite. All G-Spaces are assumed to
have a basepoint fixed under the G-action, and normally we consider only
G-CW-complexes, which are finite and G-connected.

I would like to thank Ib Madsen, Jargen Tornehave and Marcel Bokstedt for
many enlightening discussions.

1. Preliminary remarks about K- and KO, -theory

In this section we briefly describe the functors K (-) and KOs (-) and the
corresponding classifying spaces.

Ko (X) is defined in [S68], p.132, as the Grothendieck group of the additive
semigroup of complex G-bundles over the G-CW-complex X. The tensor-product of
G-bundles gives a multiplication on K, (X), and K;(X) becomes a commutative
ring. Similarly, we have the ring KO, (X) , obtained by using real rather than
complex G-bundles.

K (X) is the reduced version of K. (X). Itis defined as the subgroup of K, (X)
generated by differences E — F of complex G-bundles, such that for every x e X , the
fibres E, and F, over x are equivalent CG, -modules. Here G, ={g € G| gx =X} is
the isotropy group.

We define KOg (X ), the reduced version of KO, (X), in the same way.

Remark 1.1
If X is a G-connected G-CW-complex, i.e. for every subgroup H of G the fixed

point space X" is connected, then it follows from the local triviality condition of [L],
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p. 258, that the difference E — F of G-bundles over X is in K, (X) if and only if the
fibres E. and F. over the basepoint * are isomorphic G-modules.

By using an equivariant version of Brown's representation theorem, cf. [LMS],
(1.5.11), we see that the functors K (-) and KOg(-) are representable. We denote
the classifying spaces by BU, and BO,, respectively.

Proposition 1.2
Let U,,...,U  be acomplete set of inequivalent, irreducible complex

representations of G. Then

(BU,)® = ﬁ BU

Proof:
From [S68], (2.2), we recall the isomorphism

(13)  p:R(G)®K(X)— Ks(X)

where X is a trivial G-Space. As K (X)=[X,BU.]® =[X,BU.°],and R(G) isa
free Z -module generated by U,,...,U , the reduced version of this isomorphism
(1.4)  u:R(G)®K(X)— K (X)
would imply the result.

umaps R(G) ® K(X) into K, (X): Let E and F be bundles over X with
E - F e K(X). Then the fibres E, and F, for every x e X have the same dimension.
If V is a complex G-representation, then pu(V ® (E — F)) is contained in K;(X), as
the fibres V ® E, and V ® F, over x are isomorphic CG -modules.

On the other hand, w(R(G) ® K(X)) =K, (X): Let &e K, (X). In virtue of
(1.3) we can find elements C,, ..., ¢, in K(X), such that & = ZUi ® ¢, . The fibre of

i=1
the virtual G-bundle & over x is then, as an element of R(G), given by

(tox :iUi ®(C|)x :idi 'Ui

where d, is the complex dimension of (g;), . As & e K, (X), &, vanishes as an
element of R(G), and we conclude that the d,'s are zero. Thus, the ;'s are contained

in K(X), and (1.4) follows.
QED

In the real case we have the following:
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Proposition 1.5
LetU,, U,,...,,U, be RG-modules, V,,V,,...,V, be CG-modules, and

W, , W, ,...,W be HG -modules, such that (2.6) in [K] is satisfied. Then

k m n
BO,® =] [BOx][[BU x] [BSp
x=1 y=1 z=1

Proof:
The proof is analogous to that of (1.2) and uses as input, the isomorphism

(1.6) @:@KO(X)@@K(X)@@KSNX) — KO, (X)

of [K] (5.1). Here X is assumed to be a trivial G-space.
QED

Direct sum of vector-bundles makes K (-) and KO (-) into Abelian groups,
and we thus get an ‘additive’ G-Hopf-space structures on BU_ and BO, .
(G-Hopf-spaces are defined in [Br], p.11.10.) We denote BU; and BO, with this
‘additive’ structure by BU.® and BO,®.

It is also possible to define 'multiplicative’ G-Hopf-structures on BU, and BO; .
For a finite G-CW-complex X we consider the sets 1+ K (X) and 1+ KOs (X). As
every element in K (X) and KOs (X) is nilpotent, cf. [S68], (5.1), the tensor-
product makes 1+ K (X) and 1+ KOs (X) into Abelian groups. By invoking
Brown's representation theorem we get the representing G-Hopf-spaces BU.® and
BO.®.

Themap K (X)—1+K (X):x+1+x isabijection for every
G-CW-complex X, and it follows that BU_® and BU_® are G-homotopy-equivalent
G-Spaces. Similarly we see that BO,® and BO,® are equivalent G-spaces.

For later use we need the following:

Proposition 1.7
Let X be a G-Space. If E is a complex G-bundle over X, then there exists a

CG -module M and a complex G-bundle E* such that E® E* =M (where M
denotes the trivial G-bundle M x X { X ).

Similarly, if F is a real G-bundle, then there is an RG -module N and a real
G-bundle F* suchthat F®F* =N .
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Proof:
The complex case is (2.4) in [S68].
In the real case we do the following: F ®;, C is a complex G-bundle, and we can

thus find a complex G-bundle F, such that (F ®, C)® F, =M , where M is a

CG -module. Now, F is a direct summand of the underlying real G-bundle
r(F ®; C) of F®, C with orthogonal complement F,. By taking underlying real

G-bundles, we obtain the relation
FO(r(R)®F,)=r(M).

Let F* =r(F)@F,,and N =r(M)
QED

2. G-SO- and G-Spin-bundles

In this section we introduce G-SO-bundles and G-Spin-bundles, and we relate the
classifying spaces of the functors KSOc (=) and WpinG (-) to BO, . We start by
defining the G-spaces BSO, and BSpin, as the G-1-connected and G-2-connected
cover of BO,, respectively:

Recall that if n>1 and X is a (n—1)-connected space with = (X) Abelian, then
there isamap k, : X — H(r, (X),n), unique up to homotopy, such that =, (k,) is the
identity map on «,(X). Here H(A,n) denotes the Eilenberg MacLane-space
normally known as K(A,n).

In the equivariant case we assume that X is a G- (n —1) -connected
G-CW-complex, i.e. for every subgroup H of G we have that the fixed point space
X" is (n-1) -connected. We want to define a G-map k_: X — H(x, (X),n), where

H. (A n) is the equivariant Eilenberg-MacLane space classifying Bredon
cohomology in dimension n with coefficients in the O, -group A, cf. [El], p. 277.
n,(X) is the O, -group sending the orbit G/H to the Abelian group = (X").
Thismap k, : X = Hg(zm,(X),n) is defined as the element of
[X,Hg(x, (X),N)]® corresponding to k, e [@X, H (m,(X),n)],, under the bijection
of [El], thm. 2. Here k, : ®X — H(x,(X),n) is given by
k (G/H) =k :®X(G/H)=X" - H(x, (X"),n)=H(z, (X),n)(G/H)

Definition 2.1
Let
w, : BO; — Hg (m,(BO,),1)
be the map k, from above. Let BSO, denote the G-homotopy-fibre of w,. (k; is
well-defined, as BO, is G-connected, and n,(BO,") is Abelian, cf. (1.5)).
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Similarly, let

w, : BSO; — H (m,(BSO,) ®, (Z12),2)
be the map rok,, where r:Hg(An) - Hg(A®, (Z/2),n) is the mod 2 reduction
map, and where k, : BSO; — H; (m,(BSO;),2) is defined as above. Let BSping
denote the G-homotopy-fibre of w, . (An argument using the G-fibration

BSO, —» BO,; — H(x,(BO,).1)
shows that BSO, is G-1-connected, and k, : BSO, — H(n,(BSOy),2) is thus well-
defined.)

Proposition 2.2
LetU,, U,,...,U, be RG-modules, V,,V,,...,V, be CG-modules, and

W, , W, ,...,W be HG -modules, as in (1.5). Then

k m n
BSO,® = [ [BSOx][BU x| BSp
x=1 y=1 z=1

and
k m n
BSpin,® = [ [ BSpinx [ | BSpinU x ] | BSp
x=1 y=1 z=1

where BSpinU is the homotopy-fibre of the composite map
BU —2»H(n,(BU),2) = H(Z,2)——>H(Z/2,2)
with r being the mod 2 reduction map.

Proof:
This follows immediately from (1.5) by taking the I-connected and 2-connected

covers of BO,®. Recall that BSp is 2-connected, BU is 1-connected with
n,(BU)=Z, and that n,(BO)=Z/2 and =,(BO)=Z.
QED

Remark 2.3
BSpinU is not the same space as BSpin® of [St], p.292: We have that
n,(BSpinU) =, (BU) for n> 2, and especially m,(BSpinU) = Z, while BSpin® sits
in the fibration sequence
H(Z,2) — BSpin° — BSO,
and therefore n,(BSpin®) = n,(BSO) =0.

From [L], p.257, we have the general definition of G-A-bundles, where A is the
structure group. We explicify this definition in the cases where A= SO(n) or

Spin(n):
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Definition 2.4
A G-SO-bundle E | X of dimension nisa G-map p:E — X between G-spaces

such that
1) non-equivariantly, the map p:E — X isa SO(n) -bundle, and

2) forevery xe X and g eG the restricted map g | : E, — E, is a map of
Gx-SO-modules.

If E4 X and F { X are G-SO-bundles of the same dimension n, then a map
f:E > F isaG-SO-bundle-map if f is both a G-map and a SO(n) -bundle-map.

It is easily seen that the pull-back f E along a G-map f again is a G-SO-bundle.

Furthermore, the pull-backs along G-homotopic maps of the same G-SO-bundle are
equivalent G-SO-bundles. We define the direct sum E @ F of two G-SO-bundles

EYX and FU{ X as E@F =A"(ExF), where A: X — X x X is the diagonal
map.

Finally, we get the Grothendieck-group KSO, (X) of isomorphism-classes of
G-SO-bundles over the G-space X, and we define KSOg (X) as the subgroup of
KSO, (X)) generated by differences of bundles E — F satisfying

Vxe X :E, = F, as Gx-SO-modules.

Definition 2.5
A G-Spin-bundle E | X of dimension n is two G-spaces E and X and a G-map
p:E — X such that

1) p:E — X isnon-equivariantly a Spin(n)-bundle, and

2) forevery xe X and g eG the restricted map g | : E, — E,, is a morphism of
G-Spin-modules.

As with G-SO-bundles we get a Grothendieck-group KSping (X) and a reduced

version KSping (X).

Theorem 2.6
The classifying spaces of the functors KSOg(-) and KSpin,(-) are BSO, and

BSpin, , respectively.

Proof:
We denote momentarily the classifying spaces for the functors KSOg () and
KSpin, (-) by B, and B, . We construct G-maps ¢: B, - BSO, and
vy : B, — BSpin; and show that they are G-homotopy-equivalences.
The spaces B, and B, are G-connected, as for every subgroup H of G, we have
that
m,(B,") = KSOc(S° A (G/H),)=0
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and
nO(BZH) = KSpinG(SQ A(G/H),)=0.

We have a ‘forgetful' map ¢ : KSOg(X) — KOg (X ) for every G-connected
G-CW-complex X, defined by sending a G-SO-bundle to its underlying orthogonal
G-bundle. As ¢ is a natural transformation between functors, we get a G-map

¢:B, — BO,.
Let E—F e KSO,(S"), where E and F are G-SO-bundles. We decompose E (and

F) according to [K], (4.1): Using the notation of (1.5), we can find real bundles
Ny, My, - Ny » COMplex bundles &, C,, ... €., and symplectic bundles &, &,, ... €, , such

that
(2.7) E=U,®,n®..0V,®.(D..0W ®, &,

All the n, 's are SO-bundles, as the SO-action on E in n, = Hom,, (U, ,E) givesa
SO-action on n, . Furthermore, our decomposition of E above is easily seen to be a
decomposition of G-SO-bundles. Now, as KSO(S*) = K(S*) = KSp(S') =0, all SO-,
U- and Sp-bundles over S* are trivial. Especially, the n_'s, the ,'sandthe £,'s are
trivial bundles, and E becomes a trivial G-bundle. We see that KSOg(S*) =0, and as
KSOc(S* A (G/H ).) = KSOx (%), we conclude that B, is G-1-connected.

The map w, o ¢: B, = H(n,(BO,),1) is null-homotopic, as
[B,,He (m,(BO,),)1° = H.'(B, ; =, (BO,)) is zero: B, is G-1-connected, and [Br],
(11.7.1) shows that B, is G-homotopy-equivalent to a G-complex with no cells in
dimensions less that 2. The definition of G-cohomology, [Br], (1.6.4), implies that
H.'(B, ; m,(BO,)) vanishes.

We get a lift ¢: B, — BSO, of ¢. We show that for every finite, G-connected
G-CW-complex X the induced map ¢ : KSOg(X) = [X, BSO.]° is an isomorphism.
By using the equivariant Whitehead theorem and the fact that
KSOc(S" A(G/H),)=KSOn (S"), it suffices to consider the case where X =S",
n>1.For n=1, both KSOg(S") and [S*,BSO,]® are zero.

Let E and F be G-bundles over S", n>1, and let E — F represent an element of
[S",BSO,]® = KOs (S"). By using the decomposition (2.7), we get orthogonal
bundles n, over S". As KO(S") = KSO(S"), the n,'s are actually SO-bundles, and E

becomes a G-SO-bundle (the complex and symplectic parts of E give no problem
here). Thus, we see that ¢ is surjective.

To show that ¢ is injective, we show that the composite ¢ is injective. So, let
E — F e Ker(¢) . Decompose E and F as above and note that we have
O-isomorphisms between n, and 7, U-isomorphisms between ¢ and Zy, and
Sp-isomorphisms between & and & . But on S° there is no difference between

O-isomorphisms and SO-isomorphisms of vector-bundles, as KO(S") = KSO(S"),
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and as U- and Sp-isomorphisms are SO-isomorphisms, we get SO-isomorphisms on
all the components in the decompositions of E and F. These are assembled to show

that E = F as G-SO-bundles, and we see that E —F =0, and ¢ is injective. This
shows that B, = BSO; .

The part of the theorem concerning FpinG (-) and BSpin, is proved in the
same way: The map vy : B, — BO, is defined as the 'forgetful' map sending a
G-Spin-bundle to its underlying orthogonal bundle. By using methods as above, we
see that w; oy and w, oy are null-homotopic, and we get a G-map v : B, — BSpin,
— one of the main points is that if E 4 X is a complex bundle, then the obstruction to
E being a Spin-bundle is w,(E) € H*(X;Z/2) . But w,(E) is the image of c, (E)
under the reduction map H?*(X;Z) — H?*(X;Z/2) . (It is this fact that makes the use

of the space BSpinU necessary). By showing that the decomposition (2.7) respects
Spin-structures, we see as before that  is a G-homotopy-equivalence.

QED

We remark that the G-spaces BSO; and BSpin, are G-Hopf-spaces, cf. [Br],
811.4: The maps w, and w, are seen to be Hopf-maps by considering the
functionality of the Elmendorfer construction — the map k. : X — H(x,(X),n) will in
general be a Hopf-map when X is a Hopf-space. BSO; and BSpin; with this
Hopf-structure is denoted by BSO,® and BSpin,®.

The tensorproduct of G-SO- and G-Spin-bundles gives the Hopf-spaces BSO,®
and BSpin,® representing the functors 1+ KSOs (-) and 1+ KSping (-) . As it is the

case with BO, , we have that BSO,® and BSO,”, and that BSpin,® and BSpin,®
are equivalent G-spaces, but the Hopf-space-structures will in general be different.

For later use we describe the rational type of BSOy:

Lemma 2.8
Let q be a prime not dividing the order of the group G. Let X be a G-space, and
let Y be a g-local infinite G-loop space. Then the g-local map

Fix:[X,Y]?, = [©X,®Y],
sending the G-map f : X —Y to the O, -map

Fix(f):G/H— (f": X" 5v")
is a bijection.

Proof:
This is essentially [LMS], (V.6.8) and (V.6.9): If (|G|,q) =1, then

[X ,Y]G(q) ~ :!g[x H ,YH](q)INV
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where the superscript 'INV" indicates that we are considering homotopy classes of
‘invariant maps', [LMS] (V.6.5). But such an invariant homotopy class corresponds to
a O, -homotopy class of O, -maps X — DY .

QED

Proposition 2.9
Let BSO,Q be the representing space of the functor KSOg(-) ® Q . Then

BSO.Q = [ [ He (, (BSO.) ®Q,n)

Proof:
From (2.8) we have

KSOs(X)®Q =[X,BSO,Q]° = [®X ,®BSO,Q],,
For a subgroup H of G we have that

k m n
BSO,Q" = [ | BSOQ =] [ BUQx] [ BSPQ
x=1 y=1 z=1

as it follows from (2.2), and where BSOQ, BUQ and BSpQ are the rational types of
BSO, BU and BSp, respectively.
It is well-known that

BSOQ =] [H(r,(BSO)®Q,n)
n=2
and similarly for BU and BSp, and we see that

BSO.Q" = [ [ e (x,(BSO.") ®Q.n)

n=2
By applying [EI], thm. 2, we get the result.
QED

Of course, similar results holds for BO,Q, BU,Q, BSp,Q and BSpin,Q .

3. The structure of BSO,

In this section we study the structure of the space BSO, via the A-ring-structure

on the functor KSOg (=) . The aim is to generalize results of Atiyah-Tall and
Atiyah-Segal.

In the following we assume that G is a group of odd order. This implies that the
numbers k and n of (1.5) are 1 and 0O, respectively. Furthermore, =, (BO,) is the
constant coefficient system Z/2.

We start by showing an equivariant analogue of the splitting principle in Bredon
cohomology, cf. [Hu], (16.5.2).

10
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Lemma 3.1
Let E 4 X be a G-bundle. Then there is a G-space Q(E) and a G-map

q:Q(E) — X such that ¢ (E) splits as a sum of G-line-bundles and the map

q: HG(X;El(BOG)) - HG(Q(E);El(BOG))
IS @ monomorphism.

Proof:
As in the non-equivariant case, [Hu] (16.5.2), we construct Q(E) inductively by

going from X to P(E) — the projective bundle of E. We see that the bundle p”(E)
over P(E) splits as a sum of a canonical line-bundle and another bundle of lower

dimension than E, and we repeat this procedure on the latter bundle. (Here
p:P(E) — X is the projection on the base space).

The injectivity of the map in Bredon-cohomology is also shown stepwise. It
suffices to show that the map

p*:Hg (X;m(BOg)) = Hg (P(E);m, (BO,))
IS injective.
As the order of the group G is odd, and the coefficient system , (BO;) isa Z g, -
module, we get from [LMS], (V.6.8) and (V.6.9), that there is a natural isomorphism
(32  @:H.(Z;n(BOg)) - ((-P) H*(Z":Z/2)

Here the sum is over all conjugacy classes of subgroups of G.
Using (3.2), we reduce the problem to show that

(") :H (X":Z/2) > H (P(E)":Z/2)
is injective for every subgroup H of G. But as G is of odd order P(E)" equals the
projective bundle of the real bundle E™ | , — X", and we now use the

non-equivariant splitting principle of [Hu], (16.5.2).
QED

If E{ X isareal G-bundle, we define W, (E) € HS'(X;m,(BO,)) as W, (E-V),
where V is the trivial bundle having V = E. as fibre. If w,(E) =0, we say that E is G-
orientable.

Lemma 3.3
Let E and F be G-line-bundles over the G-connected G-space X. Then
W(E®F)=w,(E)+w(F).

Proof:
Let Ly (X) be the semi-group of G-line-bundles over X with ® as the

composition. L, () is clearly a representable functor. Denote the classifying space by
BL; . Since L, (X) has a natural multiplication for all X, we see that BL; is a
G-Hopf-space.

11
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We now get the following homotopy commutative diagram:
BL, —— Hg(m(Ble)D)
R \2
BO; — H (m,(BO; ), 1)
where the map i is induced by the map

L, (X) > KOgs(X):E > E—E,

and j comes from the O -group-homomorphism =, (j): x, (BL;) — =,(BO;) .

All these maps except possibly i are Hopf-maps. The commutativity of the
diagram now gives the result.
QED

Corollary 3.4
Assume X is a G-connected G-space. Then KSOg(X) is stable under the

multiplication induced by ®.

Proof:

It suffices to show that if E and F are G-orientable then E ® F is G-orientable,
too. By using the splitting principle (3.1), we reduce to the case where E and F are
line-bundles, and (3.3) gives the result.

QED

We recall that KO, (X)) is a A-ring: If E is a G-bundle over Xand n a

non-negative integer, then A"E is the real G-bundle A"E, where the G-action is
given by
g(el A e2 AYEA en) = (gel) A (gez) ANTIRAN (gen) .

Proposition 3.5
Let X be a finite G-connected G-CW-complex. Then KO, (X) is a special, finite-

dimensional A-ring.

Proof:
KO, (X) is finite-dimensional, as every real G-bundle is finite-dimensional: Let

E be a G-bundle over X, where n the dimension of a fibre of E. Then A"E =0 for
m>n.

That KO (X) is a special A-ring follows from the splitting principle in
KO, -theory; see [tD], p.32.
QED

Corollary 3.6
KSO, (X) is a special A-ring. KSOg (X) is a A-ideal in KSO,(X).

12
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Proof:

We must show that if E is a G-oriented G-bundle, then A"E is G-oriented for all
integers n. Using the splitting principle (3.1), we may assume that E is a sum of
linebundles, E=F @ F, ©...® F,. We have the isomorphism

AN(FROF®..0F)=0F,®.0F,)

where the sum is over all sequences i(1) <i(2) <...<i(n) of integers, cf. [Hu],
(5.6.10). By using (3.3) we see that w,(A"E) equals [r:jwl(E) =0.
QED

Proposition 3.7
For X G-connected, the y-ring KSOg(X) is an oriented y-ring.

Proof:

According to [AT], p.285 it suffices to show that for every x e KSOg(X) there
exist G-bundles E and F over X such that x = E — F, and, if n denotes the dimension
of E and F, then the linebundles A"E and A"F are the trivial one-dimensional
G-bundle V x X 4 X .

Write x as E -V , where E is a G-bundle and V is the trivial bundle V x X { X
for some G-module V, as in (1.7). Discarding the G-actions for a moment, we see that

0=w,(x) =w,(E) -w, (V) =w(E)
and thus both A"E and A"F are trivial line-bundles, as KSO(X) is an oriented
A-ring. We decompose A"E asin (1.5). As A"E is one-dimensional, this
decomposition most be of the form A"E = R®;, 1, as R, the trivial one-dimensional
representation, is the only 1-dimensional representation of G. If we ignore the
G-action, R gives the trivial line-bundle, and A"E = n, is a trivial bundle. Thus,

both A"E and A"V are isomorphicto R .
QED

From now on we assume that p is an odd prime, and that G is a p-group.

Proposition 3.8
Let X a G-connected G-CW-complex. Then KSOg(X) ®Z,, is a p-adic y-ring.

Proof:
As X is G-connected, the natural inclusion KSOg(X) ® Zp — KOs (X)® Zp isa

monomorphism preserving the y-ring-structure. [tD], (3.8.6) now gives the result.
QED
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Theorem 3.9

There is a splitting of G-Hopf-spaces:

(BSOS). =BY xBYx..B®, , m= pT_l
Proof:

[AT], lemma 2.2, p.279 shows that, as KSOc (X) ® Z,, is a p-adic y-ring, the
domain of the Adams operations y* : KSOe (X) ® Z , —> KSOc (X) ® Z,, in the
variable k extends by continuity to operations

y* 1 KSOs(X)®Z, — KSOs (X)®Z,,
where a e Zp .
Letting o be a generator of the finite factor Z/(p —1) of the splitting
(Z,) =ZI(p-1)xZ,
we have from [AT], p.284, that KSOc(X) ® Z, splits canonically into eigenspaces
for the operator *, the eigenvalues being o' ,i=0,1,...,p—2.

As this splitting is canonical in the space X, we get a corresponding splitting of
the classifying space (BSOG); into p—1 components.

Half of these components vanish: Let i be one of the odd numbers 1, 3,... p-2,
and let x € KSOg (X) ®Zp be an eigenvector for y* with eigenvalue o' . As
alP P2 =_1 [AT], (5.2), p.264, shows that
\V—l(x) _ Wa‘“’*“’z (X) = o PD2y
But as KSOg(X) ®Zp is an oriented y-ring, (3.7), y™* acts as the identity operator,
see [AT], p.285. Thus, x must be 0, and these all of ‘'odd’ components vanish.

QED
Theorem 3.10
Let p be an odd prime. Then there is a splitting of G-Hopf-spaces
(BSOS), =B xB®x..B%, , m =p7_1
Proof:
The proof is the same as that of (3.9) - the Adams operation y*® acts on
1+ KSOg¢ (X); by y?(x) = x*', where x is an element of the i'th eigenspace.
QED

Theorem 3.11
Let p be an odd prime and let k be an integer such that k + p°Z generates the

group of units in the ring Z/ p°Z . Then the cannibalistic class p* induces an G-
homotopy-equivalence of G-Hopf-spaces
p“:By — B

14



Oriented, equivariant K-theory and the Sullivan splittings
Kenneth Hansen

Proof:
[AT] (11 4.4).
QED

We obtain from [AS] thm.2 :

Theorem 3.12
Let p be a prime. Then there is a G-homotopy equivalence of G-Hopf-spaces

5:(BSOZ), —> (BSOZ),

A variant of § is &, which is the map p* at the first component B, and & at the
rest of the components. As above we see that

(3.13) 5:(BSOg), — (BSOg),

is an equivalence of G-Hopf-spaces.

Remark 3.14

Actually, the results of [AT] and [AS] cannot be used directly in (3.9)-(3.13): In
[AT] and [AS] it is assumed that we have a A-ring R with an augmentation ¢: R — Z,
and then the results of [AT] holds for the augmentation ideal 1.

We are in a more general situation, in that we have the A-ring KSO, (X) and the

A-homomorphism &: KSO, (X) - RO(G) sending a G-bundle E to the representation

E.. The kernel of € is KSOg (X) . It is possible to generalize the results of [AT] and
[AS] to this case without any serious difficulties.

Counterexample 3.15

The crucial step in getting (3.9)-(3.12) from [AT] and [AS] is (3.8). When G is
not a p-group, or when we do not localize at the order of the group, (3.8) does not
hold. We give a simple counterexample:

If (3.8) did hold, then we would have, as in (1.5.6) in [AT], that the Adams'

operation y* : KSOg (X) — KSOg (X) would be p-adically continuous in the variable
k.

Let G =7Z/3 be the cyclic group of order 3, and let p be the prime 5. Then
KSOe(S*") is isomorphic to RO(G) and is a free Z -module of rank 2 with
generators 1, V corresponding to the two irreducible RG -modules of dimension 1 and
2, respectively. w* maps al+bV to k*"(al+bV) if (k,3) =1 and to k*"(a + 2b) if
3lk.
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If w* was 5-adically continuous in k, then for every x e KSOc(S*") and integer
m we could find an integer r, such that for 5" | s and integer k, we would have
v () -y (x) € 5™ - KSOG (S*")
Butif 3|(k+s) and (3,k)=1 and x=al+bV , then
V) =y (X) = (((k +5)*" —k®)a + 2k*"b)1+ k*"V
which definitely not is contained even in 5- KSOs (S*")..

4. SF, and the Adams' conjecture

We now proceed to study the G-space SF; . Important ingredients in this analysis

is the equivariant Adams' conjecture, due to McClure, cf. [MC], and the results of 83.
Our standing assumption is that p is an odd prime, G is a p-group, and that all spaces
are p-local.

Definition 4.1
Let Q,S° be the G-loop-space limQ'S" , where the limit is over all G-modules
in a fixed, complete G-universe U/, cf. [LMS] p. 11. Q,S° is a 'G-ring-space’, where

the additive structure comes from the 'loop-sum’ *: Q'SY — Q'S" , which exists for
every G-module V, and where the multiplication is composition of maps. We let the

identity map be the basepoint of Q.S°.
Let SF, be the G-connected cover of Q.S°. SF, inherits a (multiplicative) G-
Hopf-space structure from Q.S°.

Certain facts about Q,S° are well-known - we recall from [S70], p.62, that

(42)  (QS")° =]]Q(BW,),

(H)
where the product is over all conjugacy classes (H) of subgroups of G. W,, is the

Weyl-group N;(H)/H . By taking connected covers we see that
(4.3) (SFG)G = HQO(BWH )

(H)

where Q,(BW,,) is the basepoint component of Q(BW,,).

Definition 4.4
Let X be a finite G-CW-complex. The G-fibration &: E — X is a spherical G-

fibration or a G-sphere-bundle, if

1) forevery x e X there isa G, -representation V such that the fibre E, is G, -
homotopy-equivalent to S", and
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2) themap X — E given by x> (the basepoint of E,) is a G-cofibration.

(This is the definition of [MC], p.230-231).

Fibre-wise smash-products makes the set of G-sphere-bundles over X into a
semigroup, and the corresponding Grothendieck group is denoted KF;(X). The

subgroup KFe(X) is defined as follows
(45) E-FeKFs(X) < VxeX:E =F, asG, —spaces.

The functors KF;(-) and KFs(-) are easily seen to be representable functors.
We denote the classifying space of KFs(-) by BF;.

It follows from [W] that
(4.6) n,(BF;)=0 and = (BF;)=AG)",

where the O, -group A(G)" is given by A(G)*(G/H) = A(H)* —the unit group of the
Burnsidc ring A(H) . Furthermore, we see that BF; is the classifying G-space of the

G-monoid F, - the subspace of Q,S° consisting of G-homotopy-equivalences with
the monoid structure coming from composition of maps.

Let BSF; be the 1-connected cover of BF;. It follows that BSF; is the
classifying space of the monoid SF;, and thus

(4.7)  QBSF, = SF,

Define the natural transformation J;; : KO, (X) — KF; (X) by sending the real
G-bundle E | X to its fibrewise one-point compactification S 4 X . Itis
immediately seen that J,, restricts to a natural transformation KOs (X) = KFs(X),
and thus produces a G-Hopf-map J. : BO, — BF; . Furthermore, by killing off =,
we get a lift of J; : BSO, — BSF;.

Let F/O4 and SF/SOg be the homotopy fibres of J; : BO; — BF; and
Ji : BSO, — BSF; respectively.

Proposition 4.8
The natural map 0:SF /SO, — F/Q; is a G-homotopy equivalence if G is of

odd order or if we localize at an odd prime p.

Proof:
We have the G-homotopy commutative diagram:
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SF/SO, —— BSO, e BSF,
04 2 2

F/IO, —— BO, e BF,
\2 2

He(m(BOs), ) —— Hg(m(BR;),1)

Let H be a subgroup of G. n,(BO,")=RO(H)/R(H) and =,(BF.") = A(H)"
are both 2-torsion groups, and 6 is thus an equivalence away from 2.

If G is of odd order, then both RO(H)/R(H) and A(H)* are isomorphic to
Z.12 . Furthermore, the non-zero element in KOg (S* A (G/H),) = KOu (SY) is
represented by the reduced Mobius-bundle with trivial G-action and, as in the
non-equivariant case, is mapped by J; to the non-trivial element in
KFs(S"A(G/H),). Thus y is a G-homotopy equivalence and the result follows.

QED

The Adams conjecture relates J; to the Adams-operations in K-theory. The non-
equivariant version states:

Let k be an integer, x e KO(X) . Then there exist an integer n, such that
k"I (y*x-x)=0 .

By localizing at a prime p, satisfying (p,k) =1, we get rid of the factor k.
Various attempts have been made to generalize the Adams conjecture to the
equivariant case. In [FHM], theorem 0.4, it is shown that k"sJ (y*x — x) =0, where

(k,|G]) =1, and s is the minimal integer, such that k® =+1(mod |G|) . The extra factor
s is necessary — it insures that the 'fibres' of the virtual G-bundles y*x and x are the
same element in R(G,) forevery ae X ..

McClure has another variation, cf. [MC] (5.1). This uses a variant of the functor
KF, (X):

Let p be a prime. Define the equivalence relation ~ of stable p-equivalence on
KF; (X),,, as follows: The G-sphere-bundles E and F are stably p-equivalent if there

exists a real G-representation V and G-fiber maps
f:SYE—>S'F and f,:S'F >S'E
such that f, and f, have degrees prime to p on all fixed sets of each fibre.
Denote the set of stably p-equivalence classes in KF;(X),, by KF;”(X), and

denote the reduced version by KFe'" (X).
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The relation between KF;(X),, and KR, (X) is as follows, cf. [MC], (1.3):

Let X be a G-connected, finite G-CW-complex. Then there is a natural, short
exact sequence

0— jO(G)—> KF5 (X)), — KFP(X) >0
where JO(G) =RO,(G)/RGO, (G) ([tD] p.229), and o is the composite
JO(G) — Im(J : KOg (%) () = KF5 (*) ) — KR (X)

Lemma 4.9
For X G-connected we have KF(X),,, = KFa" (X).

Proof:
We have the exact commutative diagram

0 0
\2 J

0 > KFe(X), — KFe"(X) - 0
J \2 J

0 > jOG), — KFR(X), — KRP(X) - 0
I \2 J

0 > joG), — KR, — K" - 0
J \2 J
0 0 0

QED
The equivariant Adams' conjecture [MC], (5.1) is now

Theorem 4.10
Let p be an odd prime and let k be an integer prime to p and |G| . Then the

composite
(BSOg)py —— = (BSOG)(D)—>J (BSF:)(,)
is null-homotopic.

Actually, this is not McClures formulation of the Adams conjecture, but upon
using reduced KO, - and KF; -groups, and by using (4.9), we get the result above.

The reason why this formulation doesn't involve extra factors is that we work in
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reduced KO, - and KF -theory. This means that the condition that & and £* have the
same fibres over x in R(G,) for x e X, is automatically fulfilled.

Corollary 4.11
There isamap a, :(BSO;),) — (F/Og), such that

(F/0g)p, —— (BSOg), —— (BSK),,
'\ak T\yk—l
(BSOg)

commutes up to homotopy.

Definition 4.12
Let G be a group of odd order, and let p be an odd prime. Let k be an integer,

such that k + p*Z generates the unit group (Z/ p°Z)*. Define the G-Spaces J.® and

J.® as the homotopy fibres of the maps y* —1: BSO,® — BSO,® and
y*/1:BSO,® — BSO.®. As both y* —1 and " /1 are Hopf-maps, J.® and J,®
becomes G-Hopf-spaces. J.© and J,® are equivalent G-Spaces, but the
Hopf-structures will in general be different.

Remark 4.13
In [FHM], (0.5) it is shown that J is the G-connected cover of equivariant,

orthogonal, algebraic K-theory, KO(F,,G), provided that k is a prime power.

5. The e-invariant and the Sullivan splittings

We now generalize the splittings
F/O=BSOxCokJ and SF =JxCokJ

of Sullivan to the equivariant case. We already have one of the maps needed to prove
this, namely o, , and we now define the other — the e-invariant.

As usual, p is an odd grime, G is a p-group, all spaces are p-local, and k is an
integer such that k + p*Z generates the unit group (Z/ p*Z)*.

The main reason for studying G-Spin-bundles is that, as in the non-equivariant
case, a G- Spin(8n) -bundle has a Thom-class in KOy -theory. Recall from [A], (6.1):
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Theorem 5.1
Let I'T be a compact Lie group, V a I1-Spin-module of dimension 8n, and X a
compact G-Space. Then there is an element u € KO, (X), defined by using the Dirac

operator on V, such that multiplication with u induces an isomorphism
KO; (X) > KO, (X xV)

Theorem 5.2
Let G be a finite group, E 4 X a G- Spin(8n) -bundle over the compact
G-connected G-CW-space X. Then there is an isomorphism
@, : KO, (X) — KOs (T (E))
where T(E) is the Thom-complex of E.

Proof:
Let R4 X be the principal G-Spin(8n)-bundle corresponding to E, that is, we
have a G-Spin(8n)-module V such that E = Rxg;, 4.V (V is actually the fibre of E, at

the base point of X, and the equivalence above follows from the fact that X is
G-connected).
As Spin(8n) acts freely on R, we see that
KOg,spingen) (R) = KOG (R/Spin(8n)) = KO, (X),
and that
KOs, spinen) (R xV) = KO (E) = KOs (T (E))

as E is not a compact G-space. The result follows now immediately from (5.1).
QED

We construct a G-Hopf-map e: F /O, — BSO,® as follows:

Let X be a finite G-connected G-CW-complex. Then the elements in [X,F/O,]°
can be described as 3-tuples (E,F,h), where E and F are stable G-bundles over X,

such that E — F € KSO¢ (X) and where h is a fibrewise G-homotopy equivalence

h:S® — S7. (See [BM], p.146 for a closer description of the group structure on
[X,F/0.1°.)

Since 2 is inverted, we can assume that that E and F are G-Spin-bundles, and by
stabilizing, we can further assume that E and F are G-Spin(8n)-bundles.

Let A, =®_(1) e KOs(T(E)) and A, =®, (1) € KOs (T (F)) be the
Thom-classes of E and F. h givesamap T(E) — T(F), and we define e(E,F,h) as
the unique element in 1+ KO (X) satisfying
(53)  h'(A;)=e(E.F,h)-A

— observe that KOg (T (E)) is a free KO, (X)) -module of rank 1, and that A. and
h"(A;) are the image of units of KO, (X).
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Proposition 5.4
We have a G-homotopy commutative diagram

F/O, —— BSO.®
€ *L \L pk

BSO.° —Y 5 BSO.®
where k is an integer, and i: F /O, — BSO,” is the 'inclusion’ map.

Proof:
Let X be a finite, G-connected G-CW-complex, (E,F,h) e[X,F/O.]°. Then

(L y* o €)(E, F.h) = (:ka)(h iAF)]: \VAAE _ ht‘(\'(ﬁg)) =

P(E)-(P"(F) " =p*(E~F)=p"(i(E,F,h)

QED

Corollary 5.5
The composite SF, ——F /0, ——>BSO,® factors through J, .

Proof:
We must show that the composite SF, ——» F /O, —=—>BS0,® —* »BSO,®
is nullhomotopic. But from (5.4) we have the homotopy commutative diagram

SF, ——» F/O, —— BSO.®
ed 4
BSO.,® — 5 BSO.®

and as io j is null-homotopic, we get the result.
QED

Lemma 5.6
Let k be as in (4.12). Let a, : BSO,® — F /O, be the map of (4.11). Then the

composite eoa, : BSO,® — BSO,® is G-homotopic to p* : BSO,® — BSO,® .

Proof:
We have the diagram
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BSO,® —X¥ 5 BSO,®
e ¥ ||

F/O, —— BSO.°®
ed T

BSO,® —*» BSO,®
which is homotopy commutative because of (4.11) and (5.4). As

BSO.,® —=* 5 BSO.®
pk l \ka

BSO,® —*'» BSO,®

is commutative, too, we see that 1/y* o (eca) and 1/y* o p* are G-homotopic maps.
As in [All], p.152, it is possible to define p* on a complex G-bundle E { X by

using the Thom-isomorphism @ : K, (X) — Ko (T(E)), where T(E) is the

Thom-complex of E, cf. [A], (4.8). We have

(5.7) pk(E):(DEilo\Vkoq)E(l)e Ke(X),

and from [All], (5.4), we get

(5:8) Doy o ®(x)=p"(E) v (x) , xeKs(X)

(This definition of p* coincides with that of [AT], p. 281 and p. 268 — see [AT], p.286
ff).

Letting Y =S?" =T(C" ¥ *) and by using the exponential nature of p* and its
behaviour on complex line-bundles, we see that p(C"  *) = k" and from [tD], (3.5.1),
and (5.8), we get

(59) (v )@ =k"-x(9) . 9€G,

where y € K, (S®") is considered as a complex character under the Thom-
isomorphism
@, :R(G) =K (*) > K (S™")
As 2 is inverted, the map
KSOc(5%") = RO(G) — R(G) = K, (5*")
given by 'complexification’ of representations, is injective, and preserves the

A-ringstructure.
Selecting a Z -basis for RO(G) consisting of the irreducible representations, we

see that the matrix of the map y* —1 has non-vanishing determinant — modulo k this
matrix is simply the diagonal matrix with —1 as the only entrys. We conclude that
y* —1 induces monomorphisms

Tc2n ((Wk _1)H) : nZn(BSOGH) - 7T2n(BSOGH)
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for every subgroup H of G.
Going over to the multiplicative structure, we again have that 1/y* gives

monomorphisms in homotopy (for odd n =, (BSO,") vanishes). We conclude that
eoa, and p* give the same maps on the homotopy groups.
If we now consider p* and eoa, as natural transformations between the

representable functors KSOc () and 1+ KSOc(-), we see that they coincide on the
G-cells S" A(G/H),. We want to show that p* and eoa, coincide on every
G-CW-complex.

As KSO, (BSO;) is torsion-free, ([MR], at the bottom of p. 97,) it suffices to
show that p* and eoa, coincide after rationalization. By applying (2.9), which states

that both BSO,®Q and BSO,”Q are products of equivariant Eilenberg-MacLane-

spaces, and EImendorf's description of G-cohomology, [El], p.277, the problem
reduces to show that for every integer n > 2 and subgroup H of G the natural
transformations

H"(—=,(BSO,")®Q) - H"(=;x,(BSO,") ® Q)
induced by =, ((p*)™) and = ((e>a)") coincide. But (p*)" and (e-a)" agree on
homotopy groups, and the result follows.
QED

Definition 5.10
Recall the G-Hopf-Space splitting

BSO.” = B,” x (B,”)"
of (3.9), where (B,”)" =B®x...xB__,®. Let = and =" be the projections
n:BSO, — B,” and n* : BSO, — (B,”)".
Define B: F/O; — BSO, as the composite

F/O,—2>F /Oy xF /0O, —
BSO,® x BSO,® —%% 5 BSO,® x BSO,® —=*— BSO,®

Here A is the diagonal map, while & is the map from (3.12).
Finally, define the G-space Cok J as the homotopy fibre of 3.

We are now able to generalize the splittings of Sullivan [MN], (5.18)) to the
equivariant case.

Theorem 5.11
[ gives a splitting
F /O, = BSO; x Cok J,

Proof:
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We show that Boa, : BSO; — BSO, is a G-homotopy equivalence:
Boa, :BSO,® — BSO,” G-homotopic to the composite
BSO,® —2>BSO,® x BSO,® —= 8w’ B @, (B °)*
as it follows from (5.6) and (4.11). Separating BSO,® into B,” and (B,)", we see

that the composite
B,* = BSO,® —“»B,® x(B,”)"

equals
Boea A Boea % Boea mpk x0 Bo® % (Bo®)l
where 0 is a null-homotopic map, while the composite
(Bo(g)L - BSOG® Pe s Bo® X (Bo®)l
becomes
(BO(@)L A (Bo@))L % (BO®)L npkxnib‘(wk -1) BO® x (BO®)L
Thus, if we separate the homotopy groups of the spaces BSO,® and BSO,® into
direct summands r,(BSO,®) ==, (B,”) ®r,((B,")") and

,(BSO,®) =m,(B,") ®r,((B,”)") , the matrix of B°c, becomes

sl
0 8y -1

It suffices to show that p*: B,® — B,” and (y* —1): (B,®)" — (B,®)" are G-
homotopy-equivalences. The first fact follows from (3.11), while the second is more

or less obvious — one needs the fact that & preserves the splittings (3.9) and (3.10),
but this follows from the construction of &, (3.12) and [AS], thm. 3. Furthermore, on

the factor (B,®)", the map y* -1:(B,%)" — (B,”)" is a G-homotopy-equivalence, as
this follows from the proof of (3.9), and the description of (B,”)" therein.

QED

Corollary 5.12
We have a splitting
Sk, = J, xCok J,

Proof:
We have the G-homotopy commutative diagram

J.® — BSO.® —¥=1, BSO.®

a \L (x\lf ||
SF, — F/O, —— BSO.°
il pd 54

J.° — BSO.® —¥%, BSO.®

where & is the snap from (3.13). Here the horizontal sequences are fibration
sequences, and the maps o and B are the maps induced by o and f.
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Since Boa and & are G-homotopy equivalences, a five-lemma argument on
every fixed point set diagram for every subgroup H of G shows that Boa is a

G-homotopy equivalence. As § is a G-homotopy-equivalence, the homotopy fibres of
B and B must be the same, namely Cok J; .
QED
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