Oriented, equivariant K-theory and the Sullivan splittings
Kenneth Hansen

This is part 1 of my Ph.D.-thesis, which I wrote at Aarhus University, Matematisk Institut, in 1991.
It has appeared in Matematisk Instituts Preprint Series, no. 35, 1991.

The two other parts are
- The K-localizations of Some Classifying Spaces
- The Equivariant K-localization of the G-Sphere Spectrum
The purpose of this paper is two-fold: To study oriented \(G\)-bundles and the corresponding \(K\)-theory, and to generalize the \(p\)-local splittings

\[F/O \cong BSO \times \text{Cok} J \quad \text{and} \quad SF \cong J \times \text{Cok} J \]

of Sullivan to the equivariant case.

This paper is divided into 5 parts. We start by recapitulating some essential facts about complex and real \(K\)-theory, and we study their classifying spaces.

In section 2 we introduce \(G\)-\(SO\)-bundles and \(G\)-\(Spin\)-bundles, and we find a connection between these and the 'equivariant Stiefel-Whitney-classes'.

In section 3 we study the space \(BSO_G\) in detail, at least when \(G\) is of odd order. Results about the \(\lambda\)-ring-structure on \(BSO_G\) of Atiyah-Tall and Atiyah-Segal are generalized – here it is necessary to assume that \(G\) is a \(p\)-group, where \(p\) is an odd prime, and that we are in the \(p\)-local situation.

In section 4 we study the space \(S\!F_G\) using the equivariant Adams' conjecture, and finally in section 5 we define the \(e\)-invariant and prove the Sullivan splittings.

Throughout the paper \(G\) is assumed to be finite. All \(G\)-Spaces are assumed to have a basepoint fixed under the \(G\)-action, and normally we consider only \(G\)-\(CW\)-complexes, which are finite and \(G\)-connected.

I would like to thank Ib Madsen, Jørgen Tornehave and Marcel Bökstedt for many enlightening discussions.

1. Preliminary remarks about \(K_G\) - and \(KO_G\) -theory

In this section we briefly describe the functors \(\overline{K}_G(-)\) and \(\overline{KO}_G(-)\) and the corresponding classifying spaces.

\(K_G(X)\) is defined in [S68], p.132, as the Grothendieck group of the additive semigroup of complex \(G\)-bundles over the \(G\)-\(CW\)-complex \(X\). The tensor-product of \(G\)-bundles gives a multiplication on \(K_G(X)\), and \(K_G(X)\) becomes a commutative ring. Similarly, we have the ring \(KO_G(X)\), obtained by using real rather than complex \(G\)-bundles.

\(\overline{K}_G(X)\) is the reduced version of \(K_G(X)\). It is defined as the subgroup of \(K_G(X)\) generated by differences \(E - F\) of complex \(G\)-bundles, such that for every \(x \in X\), the fibres \(E_x\) and \(F_x\) over \(x\) are equivalent \(\mathbb{C}G_x\)-modules. Here \(G_x = \{g \in G \mid gx = x\}\) is the isotropy group.

We define \(\overline{KO}_G(X)\), the reduced version of \(KO_G(X)\), in the same way.

\textbf{Remark 1.1}
If \(X\) is a \(G\)-connected \(G\)-\(CW\)-complex, i.e. for every subgroup \(H\) of \(G\) the fixed point space \(X^H\) is connected, then it follows from the local triviality condition of [L],
p. 258, that the difference \(E - F \) of \(G \)-bundles over \(X \) is in \(\overline{K}_G(X) \) if and only if the fibres \(E_x \) and \(F_x \) over the basepoint * are isomorphic \(G \)-modules.

By using an equivariant version of Brown’s representation theorem, cf. [LMS], (1.5.11), we see that the functors \(\overline{K}_G(-) \) and \(\overline{KO}_G(-) \) are representable. We denote the classifying spaces by \(BU_G \) and \(BO_G \), respectively.

Proposition 1.2

Let \(U_1, \ldots, U_m \) be a complete set of inequivalent, irreducible complex representations of \(G \). Then

\[
(BU_G)^G \cong \prod_{i=1}^m BU
\]

Proof:

From [S68], (2.2), we recall the isomorphism

\[
(1.3) \quad \mu : R(G) \otimes K(X) \to K_G(X)
\]

where \(X \) is a trivial \(G \)-Space. As \(\overline{K}_G(X) \cong [X, BU_G]^G \cong [X, BU_G^G] \), and \(R(G) \) is a free \(\mathbb{Z} \)-module generated by \(U_1, \ldots, U_m \), the reduced version of this isomorphism

\[
(1.4) \quad \mu : R(G) \otimes \overline{K}(X) \to \overline{K}_G(X)
\]

would imply the result.

\[
\mu \text{ maps } R(G) \otimes \overline{K}(X) \text{ into } \overline{K}_G(X) : \text{Let } E \text{ and } F \text{ be bundles over } X \text{ with } E - F \in \overline{K}(X). \text{ Then the fibres } E_x \text{ and } F_x \text{ for every } x \in X \text{ have the same dimension. If } V \text{ is a complex } G\text{-representation, then } \mu(V \otimes (E - F)) \text{ is contained in } \overline{K}_G(X) \text{, as the fibres } V \otimes E_x \text{ and } V \otimes F_x \text{ over } x \text{ are isomorphic } \mathbb{C}_G\text{-modules.}
\]

On the other hand, \(\mu(R(G) \otimes \overline{K}(X)) = \overline{K}_G(X) : \text{Let } \xi \in \overline{K}_G(X). \text{ In virtue of (1.3) we can find elements } \xi_1, \ldots, \xi_m \text{ in } K(X), \text{ such that } \xi = \sum_{i=1}^m U_i \otimes \xi_i. \text{ The fibre of the virtual } G\text{-bundle } \xi \text{ over } x \text{ is then, as an element of } R(G), \text{ given by}
\]

\[
\xi_x = \sum_{i=0}^m U_i \otimes (\xi_i)_x = \sum_{i=0}^m d_i \cdot U_i
\]

where \(d_i \) is the complex dimension of \((\xi_i)_x \). As \(\xi \in \overline{K}_G(X), \xi_x \text{ vanishes as an element of } R(G) \), and we conclude that the \(d_i \)'s are zero. Thus, the \(\xi_i \)'s are contained in \(\overline{K}(X) \), and (1.4) follows.

QED

In the real case we have the following:
Proposition 1.5

Let $U_1, U_2, ..., U_k$ be $\mathbb{R}G$-modules, $V_1, V_2, ..., V_m$ be $\mathbb{C}G$-modules, and $W_1, W_2, ..., W_n$ be $\mathbb{H}G$-modules, such that (2.6) in [K] is satisfied. Then

$$BO_G^G = \prod_{x=1}^{k} BO \times \prod_{y=1}^{m} BU \times \prod_{z=1}^{n} BSp$$

Proof:

The proof is analogous to that of (1.2) and uses as input, the isomorphism

$$(1.6) \quad \Phi : \bigoplus_{x=1}^{k} KO(X) \oplus \bigoplus_{y=1}^{m} K(X) \oplus \bigoplus_{z=1}^{n} KSp(X) \to KO_G(X)$$

of [K] (5.1). Here X is assumed to be a trivial G-space.

QED

Direct sum of vector-bundles makes $\overline{K}_G(-)$ and $\overline{KO}_G(-)$ into Abelian groups, and we thus get an 'additive' G-Hopf-space structures on BU_G and BO_G.

(G-Hopf-spaces are defined in [Br], p.II.10.) We denote BU_G and BO_G with this 'additive' structure by BU_G^\oplus and BO_G^\oplus.

It is also possible to define 'multiplicative' G-Hopf-structures on BU_G and BO_G.

For a finite G-CW-complex X we consider the sets $1 + \overline{K}_G(X)$ and $1 + \overline{KO}_G(X)$. As every element in $\overline{K}_G(X)$ and $\overline{KO}_G(X)$ is nilpotent, cf. [S68], (5.1), the tensor-product makes $1 + \overline{K}_G(X)$ and $1 + \overline{KO}_G(X)$ into Abelian groups. By invoking Brown's representation theorem we get the representing G-Hopf-spaces BU_G^\otimes and BO_G^\otimes.

The map $\overline{K}_G(X) \to 1 + \overline{K}_G(X) : x \mapsto 1 + x$ is a bijection for every G-CW-complex X, and it follows that BU_G^\otimes and BU_G^\oplus are G-homotopy-equivalent G-Spaces. Similarly we see that BO_G^\otimes and BO_G^\oplus are equivalent G-spaces.

For later use we need the following:

Proposition 1.7

Let X be a G-Space. If E is a complex G-bundle over X, then there exists a $\mathbb{C}G$-module M and a complex G-bundle E^\perp such that $E \oplus E^\perp \cong M$ (where M denotes the trivial G-bundle $M \times X \downarrow X$).

Similarly, if F is a real G-bundle, then there is an $\mathbb{R}G$-module N and a real G-bundle F^\perp such that $F \oplus F^\perp \cong N$.
Proof:
The complex case is (2.4) in [S68].
In the real case we do the following: $F \otimes_{\mathbb{R}} \mathbb{C}$ is a complex G-bundle, and we can thus find a complex G-bundle F_1, such that $(F \otimes_{\mathbb{R}} \mathbb{C}) \oplus F_1 \cong M$, where M is a $\mathbb{C}G$-module. Now, F is a direct summand of the underlying real G-bundle $r(F \otimes_{\mathbb{R}} \mathbb{C})$ of $F \otimes_{\mathbb{R}} \mathbb{C}$ with orthogonal complement F_2. By taking underlying real G-bundles, we obtain the relation
\[F \oplus (r(F_1) \oplus F_2) \cong r(M). \]
Let $F^1 = r(F_1) \oplus F_2$, and $N = r(M)$.

QED

2. G-SO- and G-Spin-bundles

In this section we introduce G-SO-bundles and G-Spin-bundles, and we relate the classifying spaces of the functors $K_{SO_G}(-)$ and $K_{Spin_G}(-)$ to BO_G. We start by defining the G-spaces BSO_G and $BSpin_G$ as the G-1-connected and G-2-connected cover of BO_G, respectively:

Recall that if $n > 1$ and X is a $(n-1)$-connected space with $\pi_n(X)$ Abelian, then there is a map $k_n : X \to H(\pi_n(X), n)$, unique up to homotopy, such that $\pi_n(k_n)$ is the identity map on $\pi_n(X)$. Here $H(A,n)$ denotes the Eilenberg MacLane-space normally known as $K(A,n)$.

In the equivariant case we assume that X is a G-$(n-1)$-connected G-CW-complex, i.e. for every subgroup H of G we have that the fixed point space X^H is $(n-1)$-connected. We want to define a G-map $k_n : X \to H_G(\pi_n(X),n)$, where $H_G(A,n)$ is the equivariant Eilenberg-MacLane space classifying Bredon cohomology in dimension n with coefficients in the O_G-group A, cf. [El], p. 277. $\pi_n(X)$ is the O_G-group sending the orbit G/H to the Abelian group $\pi_n(X^H)$.

This map $k_n : X \to H_G(\pi_n(X),n)$ is defined as the element of $\left[X, H_G(\pi_n(X),N) \right]^G$ corresponding to $k_n \in \left[\Phi X, H(\pi_n(X),n) \right]_{O_G}$ under the bijection of [El], thm. 2. Here $k_n : \Phi X \to H(\pi_n(X),n)$ is given by
\[k_n(G/H) = k_n : \Phi X(G/H) = X^H \to H(\pi_n(X^H),n) = H(\pi_n(X),n)(G/H). \]

Definition 2.1
Let
\[w_i : BO_G \to H_G(\pi_i(BO_G),1) \]
be the map k_i from above. Let BSO_G denote the G-homotopy-fibre of w_i. (k_i is well-defined, as BO_G is G-connected, and $\pi_i(BO_G^H)$ is Abelian, cf. (1.5)).
Similarly, let
\[w_2 : BSO_G \to H^*_G(\tilde{\pi}_2(BSO_G) \otimes \mathbb{Z}/2, 2) \]
be the map \(r \circ k_2 \), where \(r : H^*_G(A, n) \to H^*_G(A \otimes \mathbb{Z}/2, n) \) is the mod 2 reduction map, and where \(k_2 : BSO_G \to H^*_G(\tilde{\pi}_2(BSO_G), 2) \) is defined as above. Let \(BSpin_G \)
denote the \(G \)-homotopy-fibre of \(w_2 \). (An argument using the \(G \)-fibration
\[BSO_G \to BO_G \to H^*_G(\tilde{\pi}_3(BO_G), 1) \]
shows that \(BSO_G \) is \(G \)-1-connected, and \(k_2 : BSO_G \to H^*_G(\tilde{\pi}_2(BSO_G), 2) \) is thus well-defined.)

Proposition 2.2

Let \(U_1, U_2, ..., U_k \) be \(\mathbb{R}G \)-modules, \(V_1, V_2, ..., V_m \) be \(\mathbb{C}G \)-modules, and \(W_1, W_2, ..., W_n \) be \(\mathbb{H}G \)-modules, as in (1.5). Then
\[
BSO^G_G = \prod_{x=1}^{k} \prod_{y=1}^{m} \prod_{z=1}^{n} BSO \times BU \times BSp
\]
and
\[
BSpin^G_G = \prod_{x=1}^{k} \prod_{y=1}^{m} \prod_{z=1}^{n} BSpin \times BSpinU \times BSp
\]
where \(BSpinU \) is the homotopy-fibre of the composite map
\[BU \xrightarrow{k} H(\pi_2(BU), 2) = H(\mathbb{Z}, 2) \xrightarrow{r} H(\mathbb{Z}/2, 2) \]
with \(r \) being the mod 2 reduction map.

Proof:

This follows immediately from (1.5) by taking the \(l \)-connected and 2-connected
covers of \(BO^G_G \). Recall that \(BSp \) is 2-connected, \(BU \) is 1-connected with \(\pi_1(BU) \cong \mathbb{Z} \), and that \(\pi_1(BO) \cong \mathbb{Z}/2 \) and \(\pi_2(BO) \cong \mathbb{Z} \).

QED

Remark 2.3

\(BSpinU \) is not the same space as \(BSpin^c \) of [St], p.292: We have that \(\pi_n(BSpinU) \cong \pi_n(BU) \) for \(n > 2 \), and especially \(\pi_6(BSpinU) \cong \mathbb{Z} \), while \(BSpin^c \) sits in the fibration sequence
\[H(\mathbb{Z}, 2) \to BSpin^c \to BSO \]
and therefore \(\pi_6(BSpin^c) \cong \pi_6(BO) = 0 \).

From [L], p.257, we have the general definition of \(G \)-bundles, where \(A \) is the structure group. We explicify this definition in the cases where \(A = SO(n) \) or \(Spin(n) \):
Definition 2.4

A G-SO-bundle $E \hookrightarrow X$ of dimension n is a G-map $p : E \to X$ between G-spaces such that

1) non-equivariantly, the map $p : E \to X$ is a $SO(n)$-bundle, and

2) for every $x \in X$ and $g \in G$ the restricted map $g |_{E_x} : E_x \to E_{gx}$ is a map of G_x-SO-modules.

If $E \hookrightarrow X$ and $F \hookrightarrow X$ are G-SO-bundles of the same dimension n, then a map $f : E \to F$ is a G-SO-bundle-map if f is both a G-map and a $SO(n)$-bundle-map.

It is easily seen that the pull-back $f^* E$ along a G-map f again is a G-SO-bundle. Furthermore, the pull-backs along G-homotopic maps of the same G-SO-bundle are equivalent G-SO-bundles. We define the direct sum $E \oplus F$ of two G-SO-bundles $E \hookrightarrow X$ and $F \hookrightarrow X$ as $E \oplus F = \Delta^* (E \times F)$, where $\Delta : X \to X \times X$ is the diagonal map.

Finally, we get the Grothendieck-group $KSO_G(X)$ of isomorphism-classes of G-SO-bundles over the G-space X, and we define $\overline{KSO}_G(X)$ as the subgroup of $KSO_G(X)$ generated by differences of bundles $E \to F$ satisfying $\forall x \in X : E_x \cong F_x$ as G_x-SO-modules.

Definition 2.5

A G-Spin-bundle $E \hookrightarrow X$ of dimension n is two G-spaces E and X and a G-map $p : E \to X$ such that

1) $p : E \to X$ is non-equivariantly a $Spin(n)$-bundle, and

2) for every $x \in X$ and $g \in G$ the restricted map $g |_{E_x} : E_x \to E_{gx}$ is a morphism of G-Spin-modules.

As with G-SO-bundles we get a Grothendieck-group $KSpin_G(X)$ and a reduced version $\overline{KSpin}_G(X)$.

Theorem 2.6

The classifying spaces of the functors $KSO_G(_)$ and $KSpin_G(_)$ are BSO_G and $BSpin_G$, respectively.

Proof:

We denote momentarily the classifying spaces for the functors $KSO_G(_)$ and $KSpin_G(_)$ by B_1 and B_2. We construct G-maps $\phi : B_1 \to BSO_G$ and $\psi : B_2 \to BSpin_G$ and show that they are G-homotopy-equivalences.

The spaces B_1 and B_2 are G-connected, as for every subgroup H of G, we have that

$$\pi_0(B_1^H) = \overline{KSO}_G(S^0 \wedge (G/H)_+^H) = 0$$
We have a 'forgetful' map $\varphi : G KSO(X) \to G KO(X)$ for every G-connected G-CW-complex X, defined by sending a G-SO-bundle to its underlying orthogonal G-bundle. As φ is a natural transformation between functors, we get a G-map $\varphi' : B_1 \to BO_G$.

Let $E - F \in G KSO_G(S^1)$, where E and F are G-SO-bundles. We decompose E (and F) according to [K], (4.1): Using the notation of (1.5), we can find real bundles $\eta_1, \eta_2, \ldots, \eta_k$, complex bundles $\zeta_1, \zeta_2, \ldots, \zeta_m$, and symplectic bundles $\xi_1, \xi_2, \ldots, \xi_n$, such that

$$E = U_1 \oplus \eta_1 \oplus \ldots \oplus V_1 \oplus \zeta_1 \oplus \ldots \oplus W_n \oplus \xi_n.$$

All the η_i's are SO-bundles, as the SO-action on E in $\eta_i = \text{Hom}_{BG}(U, E)$ gives a SO-action on η_i. Furthermore, our decomposition of E above is easily seen to be a decomposition of G-SO-bundles. Now, as $G KSO(S^1) = K(S^1) = G KSp(S^1) = 0$, all SO, U- and Sp-bundles over S^1 are trivial. Especially, the η_i's, the ζ_j's and the ξ_k's are trivial bundles, and E becomes a trivial G-bundle. We see that $G KSO_G(S^1) = 0$, and as $G KSO_G(S^1 \wedge (G / H)) \cong G KSO_H(S^1)$, we conclude that B_1 is G-1-connected.

The map $w_1 \circ \bar{\phi} : B_1 \to H_0 G(\pi_2 BO_G, 1)$ is null-homotopic, as $[B_1, H_0 G(\pi_2 BO_G, 1)]^G = H_0 G(B_1 ; \pi_2 BO_G)$ is zero: B_1 is G-1-connected, and [Br], (11.7.1) shows that B_1 is G-homotopy-equivalent to a G-complex with no cells in dimensions less that 2. The definition of G-cohomology, [Br], (1.6.4), implies that $H_0 G(B_1 ; \pi_2 BO_G)$ vanishes.

We get a lift $\phi : B_1 \to BSO_G$ of $\bar{\phi}$. We show that for every finite, G-connected G-CW-complex X the induced map $\phi : G KSO_G(X) \to [X, G BSO_G]^G$ is an isomorphism. By using the equivariant Whitehead theorem and the fact that $G KSO_G(S^n \wedge (G / H)) = G KSO_H(S^n)$, it suffices to consider the case where $X = S^n$, $n \geq 1$. For $n = 1$, both $G KSO_G(S^1)$ and $[S^1, BSO_G]^G$ are zero.

Let E and F be G-bundles over S^n, $n > 1$, and let $E - F$ represent an element of $[S^n, BSO_G]^G = G KO_G(S^n)$. By using the decomposition (2.7), we get orthogonal bundles η_i over S^n. As $KO(S^n) = KSO(S^n)$, the η_i's are actually SO-bundles, and E becomes a G-SO-bundle (the complex and symplectic parts of E give no problem here). Thus, we see that ϕ is surjective.

To show that ϕ is injective, we show that the composite $\bar{\phi}$ is injective. So, let $E - F \in \text{Ker}(\bar{\phi})$. Decompose E and F as above and note that we have O-isomorphisms between η_i, π_i, U-isomorphisms between ζ_j, and π_j, and Sp-isomorphisms between ξ_k and π_k. But on S^0 there is no difference between O-isomorphisms and SO-isomorphisms of vector-bundles, as $KO(S^0) \cong G KSO(S^0)$,
and as U- and Sp-isomorphisms are SO-isomorphisms, we get SO-isomorphisms on all the components in the decompositions of E and F. These are assembled to show that $E \equiv F$ as G-SO-bundles, and we see that $E - F = 0$, and Φ is injective. This shows that $B_1 = BSO_G$.

The part of the theorem concerning $\overline{KSpin}_G(-)$ and $BSpin_G$ is proved in the same way: The map $\overline{\psi}: B_2 \to BO_G$ is defined as the 'forgetful' map sending a G-$Spin$-bundle to its underlying orthogonal bundle. By using methods as above, we see that $w_1 \circ \overline{\psi}$ and $w_2 \circ \overline{\psi}$ are null-homotopic, and we get a G-map $\psi: B_2 \to BSpin_G$ – one of the main points is that if $E \downarrow X$ is a complex bundle, then the obstruction to E being a $Spin$-bundle is $w_2(E) \in H^2(X; \mathbb{Z}/2)$. But $w_2(E)$ is the image of $c_1(E)$ under the reduction map $H^2(X; \mathbb{Z}) \to H^2(X; \mathbb{Z}/2)$. (It is this fact that makes the use of the space $BSpin U$ necessary). By showing that the decomposition (2.7) respects $Spin$-structures, we see as before that ψ is a G-homotopy-equivalence.

QED

We remark that the G-spaces BSO_G and $BSpin_G$ are G-Hopf-spaces, cf. [Br], §11.4: The maps w_1 and w_2 are seen to be Hopf-maps by considering the functionality of the Elmendorfer construction – the map $k_n: X \to H(\pi_n(X), n)$ will in general be a Hopf-map when X is a Hopf-space. BSO_G and $BSpin_G$ with this Hopf-structure is denoted by BSO_G^{\oplus} and $BSpin_G^{\oplus}$.

The tensorproduct of G-SO- and G-$Spin$-bundles gives the Hopf-spaces BSO_G^{\oplus} and $BSpin_G^{\oplus}$ representing the functors $1 + \overline{KSOG}(-)$ and $1 + \overline{KSpin}_G(-)$. As it is the case with BO_G, we have that BSO_G^{\oplus} and BSO_G^{\otimes}, and that $BSpin_G^{\oplus}$ and $BSpin_G^{\otimes}$ are equivalent G-spaces, but the Hopf-space-structures will in general be different.

For later use we describe the rational type of BSO_G:

Lemma 2.8

Let q be a prime not dividing the order of the group G. Let X be a G-space, and let Y be a q-local infinite G-loop space. Then the q-local map

$Fix: [X, Y]_q^G \to [\Phi_\mathcal{X}, \Phi_\mathcal{Y}]_{c_q(q)}$

sending the G-map $f: X \to Y$ to the \mathcal{O}_G-map

$Fix(f): G/H \mapsto (f^H: X^H \to Y^H)$

is a bijection.

Proof:

This is essentially [LMS], (V.6.8) and (V.6.9): If $(|G|, q) = 1$, then

$[X, Y]_q^G \cong \prod_{(H)} [X^H, Y^H]_{q, INV}^{\mathcal{O}_G}$
where the superscript 'INV' indicates that we are considering homotopy classes of 'invariant maps', [LMS] (V.6.5). But such an invariant homotopy class corresponds to a O_G-homotopy class of O_G-maps $\Phi X \to \Phi Y$.

QED

Proposition 2.9

Let BSO_G^Q be the representing space of the functor $KSO_G(-) \otimes Q$. Then

$$BSO_G^Q \cong \prod_{n=2} H_G(\pi_n(BSO_G) \otimes Q, n)$$

Proof:

From (2.8) we have

$$\overline{KSO_G}(X) \otimes Q \cong [X, BSO_G^Q]^G \cong [\Phi X, \Phi BSO_G^Q]_G$$

For a subgroup H of G we have that

$$BSO_G^Q H \cong \prod_{i=1}^k BSOQ \times \prod_{j=1}^m BUQ \times \prod_{z=1}^n BSpQ$$

as it follows from (2.2), and where $BSOQ$, BUQ and $BSpQ$ are the rational types of BSO, BU and BSp, respectively.

It is well-known that

$$BSOQ \cong \prod_{n=2} H(\pi_n(BSO) \otimes Q, n)$$

and similarly for BU and BSp, and we see that

$$BSO_G^Q H \cong \prod_{n=2} H_G(\pi_n(BSO_G^H) \otimes Q, n)$$

By applying [El], thm. 2, we get the result.

QED

Of course, similar results holds for BO_G^Q, BU_G^Q, BSp_G^Q and $BSpin_G^Q$.

3. The structure of BSO_G

In this section we study the structure of the space BSO_G via the λ-ring-structure on the functor $KSO_G(-)$. The aim is to generalize results of Atiyah-Tall and Atiyah-Segal.

In the following we assume that G is a group of odd order. This implies that the numbers k and n of (1.5) are 1 and 0, respectively. Furthermore, $\pi_n(BO_G)$ is the constant coefficient system $\mathbb{Z}/2$.

We start by showing an equivariant analogue of the splitting principle in Bredon cohomology, cf. [Hu], (16.5.2).
Lemma 3.1

Let $E \downarrow X$ be a G-bundle. Then there is a G-space $Q(E)$ and a G-map $q : Q(E) \rightarrow X$ such that $q^*(E)$ splits as a sum of G-line-bundles and the map

$$q^* : H_G^*(X; \mathbb{Z}_G(BO_G)) \rightarrow H_G^*(Q(E); \mathbb{Z}_G(BO_G))$$

is a monomorphism.

Proof:

As in the non-equivariant case, [Hu] (16.5.2), we construct $Q(E)$ inductively by going from X to $P(E)$ — the projective bundle of E. We see that the bundle $p^*(E)$ over $P(E)$ splits as a sum of a canonical line-bundle and another bundle of lower dimension than E, and we repeat this procedure on the latter bundle. (Here $p : P(E) \rightarrow X$ is the projection on the base space).

The injectivity of the map in Bredon-cohomology is also shown stepwise. It suffices to show that the map

$$p^* : H_G^*(X; \mathbb{Z}_G(BO_G)) \rightarrow H_G^*(P(E); \mathbb{Z}_G(BO_G))$$

is injective.

As the order of the group G is odd, and the coefficient system $\mathbb{Z}_G(BO_G)$ is a $\mathbb{Z}^{(2)}$-module, we get from [LMS], (V.6.8) and (V.6.9), that there is a natural isomorphism

$$\Phi : H_G^*(Z; \mathbb{Z}_G(BO_G)) \rightarrow \bigoplus_{\langle H \rangle} H^*(Z^n; \mathbb{Z}/2)$$

Here the sum is over all conjugacy classes of subgroups of G.

Using (3.2), we reduce the problem to show that

$$(q^H)^* : H^*(X^n; \mathbb{Z}/2) \rightarrow H^*(P(E)^n; \mathbb{Z}/2)$$

is injective for every subgroup H of G. But as G is of odd order $P(E)^n$ equals the projective bundle of the real bundle $E^n |_{X^n} \rightarrow X^n$, and we now use the non-equivariant splitting principle of [Hu], (16.5.2).

QED

If $E \downarrow X$ is a real G-bundle, we define $w_i(E) \in H_G^i(X; \mathbb{Z}_G(BO_G))$ as $w_i(E-V)$, where V is the trivial bundle having $V = E$ as fibre. If $w_i(E) = 0$, we say that E is G-orientable.

Lemma 3.3

Let E and F be G-line-bundles over the G-connected G-space X. Then

$$w_i(E \oplus F) = w_i(E) + w_i(F).$$

Proof:

Let $L_G(X)$ be the semi-group of G-line-bundles over X with \otimes as the composition. $L_G(\cdot)$ is clearly a representable functor. Denote the classifying space by BL_G. Since $L_G(X)$ has a natural multiplication for all X, we see that BL_G is a G-Hopf-space.
We now get the following homotopy commutative diagram:

\[
\begin{array}{ccc}
 BL_G & \xrightarrow{k_i} & H_G(\eta_i(BO),1) \\
 \downarrow & & \downarrow j \\
 BO_G & \xrightarrow{n_j} & H_G(\eta_i(BO),1)
\end{array}
\]

where the map \(i \) is induced by the map

\[
L_G(X) \rightarrow KO_G(X): E \mapsto E - E,
\]

and \(j \) comes from the \(O_G \)-group-homomorphism \(\eta_i(j): \eta_i(BO) \rightarrow \eta_i(BO) \).

All these maps except possibly \(i \) are Hopf-maps. The commutativity of the diagram now gives the result.

QED

Corollary 3.4

Assume \(X \) is a \(G \)-connected \(G \)-space. Then \(KO_G(X) \) is stable under the multiplication induced by \(\otimes \).

Proof:

It suffices to show that if \(E \) and \(F \) are \(G \)-orientable then \(E \otimes F \) is \(G \)-orientable, too. By using the splitting principle (3.1), we reduce to the case where \(E \) and \(F \) are line-bundles, and (3.3) gives the result.

QED

We recall that \(KO_G(X) \) is a \(\lambda \)-ring: If \(E \) is a \(G \)-bundle over \(X \) and \(n \) a non-negative integer, then \(\lambda^n E \) is the real \(G \)-bundle \(\Lambda^n E \), where the \(G \)-action is given by

\[
g(e_1 \wedge e_2 \wedge ... \wedge e_n) = (ge_1) \wedge (ge_2) \wedge ... \wedge (ge_n).
\]

Proposition 3.5

Let \(X \) be a finite \(G \)-connected \(G \)-CW-complex. Then \(KO_G(X) \) is a special, finite-dimensional \(\lambda \)-ring.

Proof:

\(KO_G(X) \) is finite-dimensional, as every real \(G \)-bundle is finite-dimensional: Let \(E \) be a \(G \)-bundle over \(X \), where \(n \) the dimension of a fibre of \(E \). Then \(\Lambda^m E = 0 \) for \(m > n \).

That \(KO_G(X) \) is a special \(\lambda \)-ring follows from the splitting principle in \(KG \)-theory; see [tD], p.32.

QED

Corollary 3.6

\(KSO_G(X) \) is a special \(\lambda \)-ring. \(KSO_G(X) \) is a \(\lambda \)-ideal in \(KSO_G(X) \).
Proof:
We must show that if E is a G-oriented G-bundle, then $\Lambda^n E$ is G-oriented for all integers n. Using the splitting principle (3.1), we may assume that E is a sum of linebundles, $E = F_1 \oplus F_2 \oplus \ldots \oplus F_m$. We have the isomorphism
\[
\Lambda^n(F_1 \oplus F_2 \oplus \ldots \oplus F_m) = \bigoplus(F_{i(1)} \oplus \ldots \oplus F_{i(n)}),
\]
where the sum is over all sequences $i(1) < i(2) < \ldots < i(n)$ of integers, cf. [Hu], (5.6.10). By using (3.3) we see that $w_i(\Lambda^n E)$ equals $\binom{m}{n} w_i(E) = 0$.
QED

Proposition 3.7
For X G-connected, the γ-ring $KSO_G(X)$ is an oriented γ-ring.

Proof:
According to [AT], p.285 it suffices to show that for every $x \in KSO_G(X)$ there exist G-bundles E and F over X such that $x = E - F$, and, if n denotes the dimension of E and F, then the linebundles $\Lambda^n E$ and $\Lambda^n F$ are the trivial one-dimensional G-bundle $V \times X \downarrow X$.

Write x as $E - V$, where E is a G-bundle and V is the trivial bundle $V \times X \downarrow X$ for some G-module V, as in (1.7). Discarding the G-actions for a moment, we see that
\[
0 = w_i(x) = w_i(E) - w_i(V) = w_i(E)
\]
and thus both $\Lambda^n E$ and $\Lambda^n F$ are trivial line-bundles, as $KSO(X)$ is an oriented λ-ring. We decompose $\Lambda^n E$ as in (1.5). As $\Lambda^n E$ is one-dimensional, this decomposition must be of the form $\Lambda^n E \cong \mathbb{R} \otimes \eta$, as \mathbb{R}, the trivial one-dimensional representation, is the only 1-dimensional representation of G. If we ignore the G-action, \mathbb{R} gives the trivial line-bundle, and $\Lambda^n E \cong \eta$ is a trivial bundle. Thus, both $\Lambda^n E$ and $\Lambda^n V$ are isomorphic to \mathbb{R}.
QED

From now on we assume that p is an odd prime, and that G is a p-group.

Proposition 3.8
Let X a G-connected G-CW-complex. Then $KSO_G(X) \otimes \mathbb{Z}_p$ is a p-adic γ-ring.

Proof:
As X is G-connected, the natural inclusion $KSO_G(X) \otimes \mathbb{Z}_p \rightarrow KO_G(X) \otimes \mathbb{Z}_p$ is a monomorphism preserving the γ-ring-structure. [ID], (3.8.6) now gives the result.
QED
Theorem 3.9
There is a splitting of G-Hopf-spaces:
\[
(BSO_G)_p^\wedge \cong B_0^\otimes \times B_1^\otimes \times \ldots \times B_{m-1}^\otimes , \quad m = \frac{p-1}{2}
\]

Proof:
[AT], lemma 2.2, p.279 shows that, as $\overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p$ is a p-adic γ-ring, the domain of the Adams operations $\psi^k : \overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p \to \overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p$ in the variable k extends by continuity to operations
\[
\psi^a : \overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p \to \overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p ,
\]
where $a \in \hat{\mathbb{Z}}_p$.

Letting α be a generator of the finite factor $\mathbb{Z}/(p-1)$ of the splitting
\[
(\hat{\mathbb{Z}}_p)^* \cong \mathbb{Z}/(p-1) \times \hat{\mathbb{Z}}_p
\]
we have from [AT], p.284, that $\overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p$ splits canonically into eigenspaces for the operator ψ^a, the eigenvalues being $\alpha', i = 0, 1, \ldots, p-2$.

As this splitting is canonical in the space X, we get a corresponding splitting of the classifying space $(BSO_G)_p^\wedge$ into $p-1$ components.

Half of these components vanish: Let i be one of the odd numbers $1, 3, \ldots, p-2$, and let $x \in \overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p$ be an eigenvector for ψ^a with eigenvalue α'. As $\alpha^{(p-1)/2} = -1$, [AT], (5.2), p.264, shows that
\[
\psi^{-1}(x) = \psi^{\alpha^{(p-1)/2}}(x) = \alpha'^{(p-1)/2} x = -x
\]
But as $\overline{KSO}_G(X) \otimes \hat{\mathbb{Z}}_p$ is an oriented γ-ring, (3.7), ψ^{-1} acts as the identity operator, see [AT], p.285. Thus, x must be 0, and these all of 'odd' components vanish.

QED

Theorem 3.10
Let p be an odd prime. Then there is a splitting of G-Hopf-spaces
\[
(BSO_G)_p^\wedge \cong B_0^\otimes \times B_1^\otimes \times \ldots \times B_{m-1}^\otimes , \quad m = \frac{p-1}{2}
\]

Proof:
The proof is the same as that of (3.9) - the Adams operation ψ^a acts on $1 + \overline{KSO}_G(X)_p^\wedge$ by $\psi^a(x) = x^{a'}$, where x is an element of the i'th eigenspace.

QED

Theorem 3.11
Let p be an odd prime and let k be an integer such that $k + p^2\mathbb{Z}$ generates the group of units in the ring $\mathbb{Z}/p^2\mathbb{Z}$. Then the cannibalistic class ρ^k induces an G-homotopy-equivalence of G-Hopf-spaces
\[
\rho^k : B_0^\otimes \to B_0^\otimes
\]
Oriented, equivariant K-theory and the Sullivan splittings
Kenneth Hansen

Proof: [AT] (II 4.4).

QED

We obtain from [AS] thm.2 :

Theorem 3.12
Let p be a prime. Then there is a G-homotopy equivalence of G-Hopf-spaces

$$\delta : (BSO_G^\oplus)_p^\wedge \rightarrow (BSO_G^\oplus)_p^\wedge$$

A variant of δ is $\bar{\delta}$, which is the map ρ^k at the first component B_0 and δ at the rest of the components. As above we see that

$$(3.13) \quad \bar{\delta} : (BSO_G^\oplus)_p^\wedge \rightarrow (BSO_G^\oplus)_p^\wedge$$

is an equivalence of G-Hopf-spaces.

Remark 3.14
Actually, the results of [AT] and [AS] cannot be used directly in (3.9)-(3.13): In [AT] and [AS] it is assumed that we have a λ-ring R with an augmentation $\varepsilon : R \rightarrow \mathbb{Z}$, and then the results of [AT] holds for the augmentation ideal I.

We are in a more general situation, in that we have the λ-ring $KSO_G(X)$ and the λ-homomorphism $\varepsilon : KSO_G(X) \rightarrow RO(G)$ sending a G-bundle E to the representation E. The kernel of ε is $KSO_G(X)$. It is possible to generalize the results of [AT] and [AS] to this case without any serious difficulties.

Counterexample 3.15
The crucial step in getting (3.9)-(3.12) from [AT] and [AS] is (3.8). When G is not a p-group, or when we do not localize at the order of the group, (3.8) does not hold. We give a simple counterexample:

If (3.8) did hold, then we would have, as in (1.5.6) in [AT], that the Adams' operation $\psi^k : KSO_G(X) \rightarrow \overline{KSO_G(X)}$ would be p-adically continuous in the variable k.

Let $G = \mathbb{Z}/3$ be the cyclic group of order 3, and let p be the prime 5. Then $KSO_G(S^{2n})$ is isomorphic to $RO(G)$ and is a free \mathbb{Z}-module of rank 2 with generators $1, V$ corresponding to the two irreducible $\mathbb{R}G$-modules of dimension 1 and 2, respectively. ψ^k maps $a1+bV$ to $k^{2n}(a1+bV)$ if $(k,3)=1$ and to $k^{2n}(a+2b)$ if $3|k$.
If ψ^k was 5-adically continuous in k, then for every $x \in KSO_G(S^{4n})$ and integer m we could find an integer r, such that for $S' | s$ and integer k, we would have

$$\psi^{k+s}(x) - \psi^k(x) \in 5^m \cdot KSO_G(S^{4n})$$

But if $3 | (k + s)$ and $(3, k) = 1$ and $x = a1 + bV$, then

$$\psi^{k+s}(x) - \psi^k(x) = (((k + s)^2 - k^2)a + 2k^2b)1 + k^2V$$

which definitely not is contained even in $5 \cdot KSO_G(S^{4n})$.

4. SF_G and the Adams' conjecture

We now proceed to study the G-space SF_G. Important ingredients in this analysis is the equivariant Adams' conjecture, due to McClure, cf. [MC], and the results of §3. Our standing assumption is that p is an odd prime, G is a p-group, and that all spaces are p-local.

Definition 4.1

Let $Q_G S^0$ be the G-loop-space $\lim_{\to} \Omega^V S'$, where the limit is over all G-modules in a fixed, complete G-universe \mathcal{U}, cf. [LMS] p. 11. $Q_G S^0$ is a 'G-ring-space', where the additive structure comes from the 'loop-sum' $*: \Omega^V S' \to \Omega^V S'$, which exists for every G-module V, and where the multiplication is composition of maps. We let the identity map be the basepoint of $Q_G S^0$.

Let SF_G be the G-connected cover of $Q_G S^0$. SF_G inherits a (multiplicative) G-Hopf-space structure from $Q_G S^0$.

Certain facts about $Q_G S^0$ are well-known - we recall from [S70], p.62, that

$$(Q_G S^0)^G \cong \prod_{(H)} Q(BW_H),$$

where the product is over all conjugacy classes (H) of subgroups of G. W_H is the Weyl-group $N_G(H)/H$. By taking connected covers we see that

$$(SF_G)^G \cong \prod_{(H)} Q_0(BW_H),$$

where $Q_0(BW_H)$ is the basepoint component of $Q(BW_H)$.

Definition 4.4

Let X be a finite G-CW-complex. The G-fibration $\xi: E \to X$ is a spherical G-fibration or a G-sphere-bundle, if

1) for every $x \in X$ there is a G_x-representation V such that the fibre E_x is G_x-homotopy-equivalent to S^V, and
2) the map $X \rightarrow E$ given by $x \mapsto (the$ basepoint of $E_x)$ is a G-cofibration.

(This is the definition of [MC], p.230-231).

Fibre-wise smash-products makes the set of G-sphere-bundles over X into a semigroup, and the corresponding Grothendieck group is denoted $KF_G(X)$. The subgroup $\overline{KF}_G(X)$ is defined as follows

\[(4.5) \quad E - F \in \overline{KF}_G(X) \quad \iff \quad \forall x \in X : E_x \simeq F_x \ as \ G_x - spaces.\]

The functors $KF_G(-)$ and $\overline{KF}_G(-)$ are easily seen to be representable functors. We denote the classifying space of $\overline{KF}_G(-)$ by BF_G.

It follows from [W] that

\[(4.6) \quad \pi_0(BF_G) = 0 \quad and \quad \pi_1(BF_G) \cong \mathcal{A}(G)^\ast,\]

where the \mathcal{O}_G-group $\mathcal{A}(G)^\ast$ is given by $\mathcal{A}(G)^\ast(G/H) = A(H)^\ast$ – the unit group of the Burnside ring $A(H)$. Furthermore, we see that BF_G is the classifying G-space of the G-monoid F_G – the subspace of $Q_G S^0$ consisting of G-homotopy-equivalences with the monoid structure coming from composition of maps.

Let BSF_G be the 1-connected cover of BF_G. It follows that BSF_G is the classifying space of the monoid SF_G, and thus

\[(4.7) \quad \Omega BGSF_G \cong SF_G.\]

Define the natural transformation $J_G : KO_G(X) \rightarrow KF_G(X)$ by sending the real G-bundle $E \downarrow X$ to its fibrewise one-point compactification $S^E \downarrow X$. It is immediately seen that J_G restricts to a natural transformation $KO_G(X) \rightarrow \overline{KF}_G(X)$, and thus produces a G-Hopf-map $J_G : BO_G \rightarrow BF_G$. Furthermore, by killing off π_1, we get a lift of $J_G : BSO_G \rightarrow BSF_G$.

Proposition 4.8

The natural map $\theta : SF/ SO_G \rightarrow F/O_G$ is a G-homotopy equivalence if G is of odd order or if we localize at an odd prime p.

Proof:

We have the G-homotopy commutative diagram:
Oriented, equivariant K-theory and the Sullivan splittings
Kenneth Hansen

\[
\begin{align*}
SF / SO_G & \longrightarrow BSO_G & J_G & \rightarrow BSG_G \\
0 \downarrow & & \downarrow & \\
F / O_G & \longrightarrow BO_G & J_G & \rightarrow BF_G \\
\downarrow & & \downarrow & \\
H_G(\pi_1(BO_G), 1) & \longrightarrow H_G(\pi_1(BF_G), 1)
\end{align*}
\]

Let H be a subgroup of G. $\pi_1(BO_G^H) \cong RO(H) / R(H)$ and $\pi_1(BF_G^H) = A(H)^\times$ are both 2-torsion groups, and 0 is thus an equivalence away from 2.

If G is of odd order, then both $RO(H) / R(H)$ and $A(H)^\times$ are isomorphic to $\mathbb{Z}/2$. Furthermore, the non-zero element in $K_G(S^1 \wedge (G / H)^\times) \cong KO_H(S^1)$ is represented by the reduced Möbius-bundle with trivial G-action and, as in the non-equivariant case, is mapped by J_G to the non-trivial element in $KF_G(S^1 \wedge (G / H)^\times)$. Thus ψ is a G-homotopy equivalence and the result follows.

QED

The Adams conjecture relates J_G to the Adams-operations in K-theory. The non-equivariant version states:

Let k be an integer, $x \in KO(X)$. Then there exist an integer n, such that

\[k^n J(\psi^k x - x) = 0.\]

By localizing at a prime p, satisfying $(p, k) = 1$, we get rid of the factor k. Various attempts have been made to generalize the Adams conjecture to the equivariant case. In [FHM], theorem 0.4, it is shown that $k^n s J(\psi^i x - x) = 0$, where $(k, |G|) = 1$, and s is the minimal integer, such that $k^s \equiv \pm 1 \pmod{|G|}$. The extra factor s is necessary – it insures that the 'fibres' of the virtual G-bundles $\psi^k x$ and x are the same element in $R(G_a)$ for every $a \in X$.

McClure has another variation, cf. [MC] (5.1). This uses a variant of the functor $KF_G(X)$:

Let p be a prime. Define the equivalence relation \sim of stable p-equivalence on $KF_G(X)_{(p)}$ as follows: The G-sphere-bundles E and F are stably p-equivalent if there exists a real G-representation V and G-fiber maps

\[f_1 : S^v E \to S^v F \quad \text{and} \quad f_2 : S^v F \to S^v E\]

such that f_1 and f_2 have degrees prime to p on all fixed sets of each fibre.

Denote the set of stably p-equivalence classes in $KF_G(X)_{(p)}$ by $KF_G^{(p)}(X)$, and denote the reduced version by $\overline{KF_G}^{(p)}(X)$.
The relation between $KF_G^*(X)_{(p)}$ and $KF_G^{(p)}(X)$ is as follows, cf. [MC], (1.3):

Let X be a G-connected, finite G-CW-complex. Then there is a natural, short exact sequence

$$0 \rightarrow jO(G) \overset{\alpha}{\longrightarrow} KF_G^*(X)_{(p)} \longrightarrow KF_G^{(p)}(X) \rightarrow 0$$

where $jO(G) = RO_0(G)/RO_1(G)$ ([tD] p.229), and α is the composite

$$jO(G) \rightarrow \text{Im}(J : KO_G(*)_{(p)} \rightarrow KF_G(*)_{(p)}) \rightarrow KF_G(X)_{(p)}$$

Lemma 4.9

For $X G$-connected we have $KF_G^*(X)_{(p)} \cong KF_G^{(p)}(X)$.

Proof:

We have the exact commutative diagram

$$
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & KF_G^*(X)_{(p)} & KF_G^{(p)}(X) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & jO(G)_{(p)} & KF_G^*(X)_{(p)} & KF_G^{(p)}(X) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & jO(G)_{(p)} & KF_G(*)_{(p)} & KF_G^{(p)}(*) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0
\end{array}
$$

QED

The equivariant Adams' conjecture [MC], (5.1) is now

Theorem 4.10

Let p be an odd prime and let k be an integer prime to p and $|G|$. Then the composite

$$(BSO_G)_{(p)} \overset{\psi^{1-1}}{\longrightarrow} (BSO_G)_{(p)} \overset{J}{\longrightarrow} (BSF_G)_{(p)}$$

is null-homotopic.

Actually, this is not McClures formulation of the Adams conjecture, but upon using reduced KO_G- and KF_G-groups, and by using (4.9), we get the result above. The reason why this formulation doesn't involve extra factors is that we work in
reduced KO_G- and KF_G-theory. This means that the condition that ξ and ξ^k have the same fibres over x in $R(G_x)$ for $x \in X$, is automatically fulfilled.

Corollary 4.11

There is a map $\alpha_k : (BSO_G)_G(p) \to (F/O_G)_G(p)$ such that

$$(F/O_G)_G(p) \xymatrix{ \ar[r] & (BSO_G)_G(p) \ar[r]^-j & (BSF_G)_G(p) \ar[l]^-{\alpha_k} \ar@{<=>}[u]_{\psi^k - 1} }$$

commutes up to homotopy.

Definition 4.12

Let G be a group of odd order, and let p be an odd prime. Let k be an integer, such that $2^k p^2 \mathbb{Z}$ generates the unit group $(\mathbb{Z}/p^2 \mathbb{Z})^\times$. Define the G-Spaces J_G^\oplus and J_G^\otimes as the homotopy fibres of the maps $\psi^k - 1 : BSO_G^\oplus \to BSO_G^\oplus$ and $\psi^k / 1 : BSO_G^\otimes \to BSO_G^\otimes$. As both $\psi^k - 1$ and $\psi^k / 1$ are Hopf-maps, J_G^\oplus and J_G^\otimes becomes G-Hopf-spaces. J_G^\oplus and J_G^\otimes are equivalent G-Spaces, but the Hopf-structures will in general be different.

Remark 4.13

In [FHM], (0.5) it is shown that J_G is the G-connected cover of equivariant, orthogonal, algebraic K-theory, $KO(\mathbb{F}_p, G)$, provided that k is a prime power.

5. The e-invariant and the Sullivan splittings

We now generalize the splittings $F/O \simeq BSO \times \text{Cok} J$ and $SF \simeq J \times \text{Cok} J$ of Sullivan to the equivariant case. We already have one of the maps needed to prove this, namely α_k, and we now define the other – the e-invariant.

As usual, p is an odd prime, G is a p-group, all spaces are p-local, and k is an integer such that $2^k p^2 \mathbb{Z}$ generates the unit group $(\mathbb{Z}/p^2 \mathbb{Z})^\times$.

The main reason for studying G-Spin-bundles is that, as in the non-equivariant case, a G-Spin$(8n)$-bundle has a Thom-class in KO_G-theory. Recall from [A], (6.1):
Theorem 5.1

Let Π be a compact Lie group, V a Π-Spin-module of dimension $8n$, and X a compact G-Space. Then there is an element $u \in KO_G(X)$, defined by using the Dirac operator on V, such that multiplication with u induces an isomorphism

$$KO_G(X) \to KO_G(X \times V)$$

Theorem 5.2

Let G be a finite group, $E \downarrow X$ a G-$\text{Spin}(8n)$-bundle over the compact G-connected G-CW-space X. Then there is an isomorphism

$$\Phi_E : KO_G(X) \to KO_G(T(E))$$

where $T(E)$ is the Thom-complex of E.

Proof:

Let $R \downarrow X$ be the principal G-$\text{Spin}(8n)$-bundle corresponding to E, that is, we have a G-$\text{Spin}(8n)$-module V such that $E \cong R \times_{\text{Spin}(8n)} V$ (V is actually the fibre of E, at the base point of X, and the equivalence above follows from the fact that X is G-connected).

As $\text{Spin}(8n)$ acts freely on R, we see that

$$KO_{G_{\text{Spin}(8n)}}(R) \cong KO_G(R/\text{Spin}(8n)) \cong KO_G(X),$$

and that

$$KO_{G_{\text{Spin}(8n)}}(R \times V) \cong KO_G(E) \cong KO_G(T(E))$$

as E is not a compact G-space. The result follows now immediately from (5.1).

QED

We construct a G-Hopf-map $e : F/O_G \to BS_O^G$ as follows:

Let X be a finite G-connected G-CW-complex. Then the elements in $[X,F/O_G]^G$ can be described as 3-tuples (E,F,h), where E and F are stable G-bundles over X, such that $E - F \in KSO_G(X)$ and where h is a fibrewise G-homotopy equivalence $h : S^E \to S^F$. (See [BM], p.146 for a closer description of the group structure on $[X,F/O_G]^G$.)

Since 2 is inverted, we can assume that E and F are G-Spin-bundles, and by stabilizing, we can further assume that E and F are G-$\text{Spin}(8n)$-bundles.

Let $\Delta_E = \Phi_E(1) \in KO_G(T(E))$ and $\Delta_F = \Phi_F(1) \in KO_G(T(F))$ be the Thom-classes of E and F. h gives a map $T(E) \to T(F)$, and we define $e(E,F,h)$ as the unique element in $1 + KO_G(X)$ satisfying

$$h^*(\Delta_F) = e(E,F,h) \cdot \Delta_E$$

– observe that $KO_G(T(E))$ is a free $KO_G(X)$-module of rank 1, and that Δ_E and $h^*(\Delta_F)$ are the image of units of $KO_G(X)$.
Proposition 5.4

We have a G-homotopy commutative diagram

\[
\begin{array}{cccc}
F/O_G & \longrightarrow & BSO_G^\oplus \\
e & \downarrow & \rho^k \\
BSO_G^\otimes & \underset{1/\psi^k}{\longrightarrow} & BSO_G^\otimes
\end{array}
\]

where k is an integer, and $i : F/O_G \rightarrow BSO_G^\otimes$ is the 'inclusion' map.

Proof:

Let X be a finite, G-connected G-CW-complex, $(E,F,h) \in [X,F/O_G]^G$. Then

\[
(1/\psi^k \circ e)(E,F,h) = (1/\psi^k) \left(\frac{h^*(\Delta_P)}{\Delta_E} \right) = \frac{\psi^k \Delta_E}{\Delta_E} \cdot \frac{h^*(\Delta_P)}{h^*(\psi^k \Delta_P)} = \rho^k (E) \cdot (\rho^k (F))^{-1} = \rho^k (E - F) = \rho^k (i(E,F,h))
\]

QED

Corollary 5.5

The composite $SF_G \longrightarrow F/O_G \longrightarrow BSO_G^\otimes$ factors through J_G.

Proof:

We must show that the composite $SF_G \longrightarrow F/O_G \longrightarrow BSO_G^\otimes \underset{1/\psi^k}{\longrightarrow} BSO_G^\otimes$ is nullhomotopic. But from (5.4) we have the homotopy commutative diagram

\[
\begin{array}{cccc}
SF_G & \longrightarrow & F/O_G & \longrightarrow & BSO_G^\otimes \\
e & \downarrow & \rho^k \\
BSO_G^\otimes & \underset{1/\psi^k}{\longrightarrow} & BSO_G^\otimes
\end{array}
\]

and as $i \circ j$ is null-homotopic, we get the result.

QED

Lemma 5.6

Let k be as in (4.12). Let $\alpha_k : BSO_G^\otimes \rightarrow F/O_G$ be the map of (4.11). Then the composite $e \circ \alpha_k : BSO_G^\otimes \rightarrow BSO_G^\otimes$ is G-homotopic to $\rho^k : BSO_G^\otimes \rightarrow BSO_G^\otimes$.

Proof:

We have the diagram
Oriented, equivariant K-theory and the Sullivan splittings
Kenneth Hansen

\[\begin{align*}
BSO_G^\oplus & \xrightarrow{1-\psi^k} BSO_G^\oplus \\
\alpha_k & \\
F / O_G & \xrightarrow{i} BSO_G^\oplus \\
\iota & \downarrow p^k \\
BSO_G^\oplus & \xrightarrow{1/\psi^k} BSO_G^\oplus
\end{align*} \]

which is homotopy commutative because of (4.11) and (5.4). As

\[\begin{align*}
BSO_G^\oplus & \xrightarrow{1-\psi^k} BSO_G^\oplus \\
\rho^k & \\
BSO_G^\oplus & \xrightarrow{1/\psi^k} BSO_G^\oplus
\end{align*} \]

is commutative, too, we see that $1/\psi^k \circ (e \circ \alpha^k)$ and $1/\psi^k \circ \rho^k$ are G-homotopic maps.

As in [AII], p.152, it is possible to define ρ^k on a complex G-bundle $E \xrightarrow{} X$ by using the Thom-isomorphism $\Phi_E : K_G(X) \rightarrow \bar{K}_G(T(E))$, where $T(E)$ is the Thom-complex of E, cf. [A], (4.8). We have

\[(5.7) \quad \rho^k(E) = \Phi_E^{-1} \circ \psi^k \circ \Phi_E(l) \in K_G(X),\]

and from [AII], (5.4), we get

\[(5.8) \quad \Phi_E^{-1} \circ \psi^k \circ \Phi_E(x) = \rho^k(E) \cdot \psi^k(x), \quad x \in K_G(X)\]

(This definition of ρ^k coincides with that of [AT], p. 281 and p. 268 – see [AT], p.286 ff.).

Letting $Y = S^{2n} = T(\mathbb{C}^n \xrightarrow{} \ast)$ and by using the exponential nature of ρ^k and its behaviour on complex line-bundles, we see that $\rho(\mathbb{C}^n \xrightarrow{} \ast) = k^n$ and from [tD], (3.5.1), and (5.8), we get

\[(5.9) \quad (\psi^k(\chi))(g) = k^n \cdot \chi(g), \quad g \in G,\]

where $\chi \in \bar{K}_G(S^{2n})$ is considered as a complex character under the Thom-isomorphism

$\Phi_{\psi^k} : R(G) = K_G(\ast) \rightarrow \bar{K}_G(S^{2n})$.

As 2 is inverted, the map

$KSO_G(S^{2n}) \cong RO(G) \rightarrow R(G) \cong \bar{K}_G(S^{2n})$

given by 'complexification' of representations, is injective, and preserves the λ-ringstructure.

Selecting a \mathbb{Z}-basis for $RO(G)$ consisting of the irreducible representations, we see that the matrix of the map $\psi^k - 1$ has non-vanishing determinant – modulo k this matrix is simply the diagonal matrix with -1 as the only entries. We conclude that $\psi^k - 1$ induces monomorphisms

$\pi_{2n}((\psi^k - 1)^H) : \pi_{2n}(BSO_G^H) \rightarrow \pi_{2n}(BSO_G^H)$.
for every subgroup H of G.

Going over to the multiplicative structure, we again have that $1/\psi^k$ gives monomorphisms in homotopy (for odd n, $\pi_n(BSO^n_H)$ vanishes). We conclude that $e \circ \alpha_k$ and ρ^k give the same maps on the homotopy groups.

If we now consider ρ^k and $e \circ \alpha_k$ as natural transformations between the representable functors $KSO_G(\cdot)$ and $1 + KSO_G(\cdot)$, we see that they coincide on the G-cells $S^n \wedge (G/H)_+$. We want to show that ρ^k and $e \circ \alpha_k$ coincide on every G-CW-complex.

As $KSO_G(BSO_G)$ is torsion-free, ([MR], at the bottom of p. 97,) it suffices to show that ρ^k and $e \circ \alpha_k$ coincide after rationalization. By applying (2.9), which states that both $BSO^G \otimes \mathbb{Q}$ and $BSO^G \otimes \mathbb{Q}$ are products of equivariant Eilenberg-MacLane-spaces, and Elmendorf's description of G-cohomology, [El], p.277, the problem reduces to show that for every integer $n > 2$ and subgroup H of G the natural transformations

$$H^n(\cdot; \pi_n(BSO^n_H) \otimes \mathbb{Q}) \rightarrow H^n(\cdot; \pi_n(BSO^n_H) \otimes \mathbb{Q})$$

induced by $\pi*((\rho^k)^n)$ and $\pi*((e \circ \alpha^k)^n)$ coincide. But $(\rho^k)^n$ and $(e \circ \alpha^k)^n$ agree on homotopy groups, and the result follows.

QED

Definition 5.10

Recall the G-Hopf-Space splitting

$$BSO^G \simeq B_0^\otimes \times (B_0^\otimes)\perp$$

of (3.9), where $(B_0^\otimes)\perp = B_1^\otimes \times \ldots \times B_{m-1}^\otimes$. Let π and π^\perp be the projections $\pi : BSO_G \rightarrow B_0^\otimes$ and $\pi^\perp : BSO_G \rightarrow (B_0^\otimes)\perp$.

Define $\beta : F/O_G \rightarrow BSO_G$ as the composite

$$F/O_G \xrightarrow{\Delta} F/O_G \times F/O_G \xrightarrow{e \times i} BSO^G \times BSO^G \xrightarrow{\pi \times \pi^\perp} BSO^G \otimes BSO^G \xrightarrow{\id \times \delta} BSO^G \otimes BSO^G \xrightarrow{\pi \times \pi^\perp} BSO^G \otimes BSO^G$$

Here Δ is the diagonal map, while δ is the map from (3.12).

Finally, define the G-space $\text{Cok}J_G$ as the homotopy fibre of β.

We are now able to generalize the splittings of Sullivan [MN, (5.18)] to the equivariant case.

Theorem 5.11

β gives a splitting $F/O_G \simeq BSO_G \times \text{Cok}J_G$

Proof:

24
We show that $\beta \circ \alpha_k : BSO_G \rightarrow BSO_G$ is a G-homotopy equivalence:

$$\beta \circ \alpha_k : BSO_G \rightarrow BSO_G$$

G-homotopic to the composite

$$BSO_G \xrightarrow{\Lambda} BSO_G \times BSO_G \xrightarrow{\pi \times \pi \cdot \delta(y^{k-1})} B_0^\oplus \times (B_0^\oplus)^\perp$$

as it follows from (5.6) and (4.11). Separating BSO_G^\oplus into B_0^\oplus and $(B_0^\oplus)^\perp$, we see that the composite

$$B_0^\oplus \rightarrow BSO_G \xrightarrow{\beta \circ \alpha_k} B_0^\oplus \times (B_0^\oplus)^\perp$$

equals

$$B_0^\oplus \xrightarrow{\Lambda} B_0^\oplus \times B_0^\oplus \xrightarrow{\pi \times \pi \cdot \delta(y^{k-1})} B_0^\oplus \times (B_0^\oplus)^\perp$$

where 0 is a null-homotopic map, while the composite

$$(B_0^\oplus)^\perp \rightarrow BSO_G \xrightarrow{\beta \circ \alpha_k} B_0^\oplus \times (B_0^\oplus)^\perp$$

becomes

$$(B_0^\oplus)^\perp \xrightarrow{\Lambda} (B_0^\oplus)^\perp \times (B_0^\oplus)^\perp \xrightarrow{\pi \times \pi \cdot \delta(y^{k-1})} B_0^\oplus \times (B_0^\oplus)^\perp$$

Thus, if we separate the homotopy groups of the spaces BSO_G^\oplus and BSO_G^\otimes into direct summands $\pi_n(BSO_G^\oplus) = \pi_n(B_0^\oplus) \oplus \pi_n((B_0^\oplus)^\perp)$ and $\pi_n(BSO_G^\otimes) = \pi_n(B_0^\otimes) \oplus \pi_n((B_0^\otimes)^\perp)$, the matrix of $\beta \circ \alpha_k$ becomes

$$\begin{pmatrix}
\rho^k & \rho^k \\
0 & \delta(y^{k-1})
\end{pmatrix}$$

It suffices to show that $\rho^k : B_0^\oplus \rightarrow B_0^\oplus$ and $\delta(y^{k-1}) : (B_0^\oplus)^\perp \rightarrow (B_0^\oplus)^\perp$ are G-homotopy-equivalences. The first fact follows from (3.11), while the second is more or less obvious – one needs the fact that δ preserves the splittings (3.9) and (3.10), but this follows from the construction of δ, (3.12) and [AS], thm. 3. Furthermore, on the factor $(B_0^\otimes)^\perp$, the map $\psi^k - 1 : (B_0^\otimes)^\perp \rightarrow (B_0^\otimes)^\perp$ is a G-homotopy-equivalence, as this follows from the proof of (3.9), and the description of $(B_0^\otimes)^\perp$ therein.

QED

Corollary 5.12

We have a splitting

$$SF_G = J_G \times \text{Cok}J_G$$

Proof:

We have the G-homotopy commutative diagram

$$
\begin{array}{ccc}
J_G^\oplus & \rightarrow & BSO_G^\oplus \\
\pi \downarrow & & \alpha \downarrow \\
SF_G & \rightarrow & F/O_G \\
\bar{\pi} \downarrow & & \bar{\beta} \downarrow \\
J_G^\otimes & \rightarrow & BSO_G^\otimes \\
\end{array}
$$

where $\bar{\beta}$ is the snap from (3.13). Here the horizontal sequences are fibration sequences, and the maps $\bar{\alpha}$ and $\bar{\beta}$ are the maps induced by α and β.

25
Since $\beta \circ \alpha$ and δ are G-homotopy equivalences, a five-lemma argument on every fixed point set diagram for every subgroup H of G shows that $\delta \circ \alpha$ is a G-homotopy equivalence. As δ is a G-homotopy-equivalence, the homotopy fibres of β and δ must be the same, namely $\text{Cok} J_g$.

QED

References

[K] K. Kawakubo: ΛG-Structure of G-Vector Bundles and Groups $KO_g(X)$, $KSp_g(X)$ and $J_g(X)$. Osaka J. Math, 19 (1982), 695-715.

